Atelier Migration PostgreSQL Migrator

Découverte de PostgreSQL Migrator

YDALIBO

L'expertise PostgreSQL

Contents

1/ Introduction 3
1.1 Tourdetable e e 4
1.2 Déroulédelatelier e 5
1.3 Prérequisdelatelier 6
2/ Présentation 7
2.1 Ambitions (1/3) e e e 8
2.2 Ambitions (2/3) e 9
2.3 Ambitions (3/3) e e e e 10
2.4 Fonctionnalités (1/4) e 11
2.5 Fonctionnalités (2/4) e e e 12
2.6 Fonctionnalités (3/4) e 13
2.7 Fonctionnalités (4/4) e e e 15
3/ Exercice #1 17
3.1 Installation de PostgreSQL Migrator o e 18
3.2 Inspecterlecatalogue e 19
3.3 Créationdurapportd’évaluation 23
4/ Exercice #2 27
4.1 Conversions GENErIQUES . . . v v v v v v i e e e e e e e e e e e e e 28
4.2 Naviguerdanslinterface graphique Lo o 29
4.3 Procéder a des modificationsdumodele 32
4.4 Générerle modélede donnéesconvertiauformatSQL 34
5/ Exercice #3 39
5.1 Configurationdelabasecible 40
5.2 Créationdestables e 41
53 Copiedesdonnées e 43
5.4 Créationdesindexetdescontraintes, 45
6/ Exercice #4 49
6.1 Validationdesdonnées. 50
6.2 Tachesdemaintenance 53
Notes 55

DALIBO Workshops

Notes 57
Notes 59
Nos autres publications 61
Formations e e e e e e e e e 62
Livresblancs o e e e e 63
Téléchargementgratuit. 64
7/ DALIBO, L’Expertise PostgreSQL 65

Découverte de PostgreSQL Migrator

DALIBO Workshops

0

PostgreSQL Migrator

Modernize your database by moving
to PostgreSQL.

Découverte de PostgreSQL Migrator

1/ Introduction

DALIBO Workshops

1.1 TOUR DE TABLE

- «Avez-vous un ou des projets de migration vers PostgreSQL ? »
- « Depuis quel systeme ? Oracle, MySQL, SQL Server ? »

- «Quels outils ou techniques avez-vous employés ? »

- «Quelles ont été les principales difficultés ? »

4 Découverte de PostgreSQL Migrator

DALIBO Workshops

1.2 DEROULE DE L’ATELIER

- 3 heures
- Présentation de PostgreSQL Migrator
- Travaux pratiques sur la base HR

- Manipulation de l'outil
- Analyse de la complexité
- Migration des tables et des données

Découverte de PostgreSQL Migrator

DALIBO Workshops

1.3 PREREQUIS DE L’ATELIER

Un terminal

Une VM Rocky Linux 9 ou équivalent
Compétences Linux et SQL

Une instance Oracle (image gvenzl/oracle-free:23-sl1im)

Une instance PostgreSQL 18

Environnement

Lensemble des travaux pratiques nécessite une base de données Oracle dans un conteneur. Le mod-
éle de données est le traditionnel schéma HR avec des adaptations.

Installer docker-ce et docker-compose-plugin et démarrer le service.

https://docs.docker.com/engine/install/rhel/#installation-methods

$ sudo dnf -y update

$ sudo dnf -y dinstall dnf-plugins-core

$ sudo dnf config-manager --add-repo

< https://download.docker.com/linux/rhel/docker-ce.repo

$ sudo dnf -y dinstall -y docker-ce docker-ce-cli containerd.io docker-compose-plugin
$ sudo systemctl enable --now docker

Démarrer les conteneurs Oracle et PostgreSQL

Un fichier docker-compose.ym1 est disponible en téléchargement.

$ curl -s -kL https://dali.bo/tp_migpg -o - | tar xvz
$ sudo docker compose up -d oracle postgres

6 Découverte de PostgreSQL Migrator

2/ Présentation

DALIBO Workshops

2.1 AMBITIONS (1/3)

Moderniser la migration avec des logiciels libres.
- Un outil universel

- Coupléa transqglate pour la conversion du code
- Sous licence PostgreSQL
- Hébergé sur Gitlab.com

- Langages Go (backend) et Vue.js (frontend)

@ PostgreSQL Migrator O kunstr | 8 | Yok 3

$ master v | pg_migrate + v Find file : Project information
4 Modernize your database by maving
to PostgreSQL

Name Last commit Last update

https://postgresqgl-migrator.rtfd.io
B circleci test: Cleanup MySQL asap 3 weeks ago

PostgreSQL | database ' Oracle + 2 more

B3 .config/mise/tasks test: get rid of freepdbl 5 months ago
Badocs docs: Review JSON files page 1week ago

- 1,995 Commits

ints L i: Avoid w ing i lexit it S5d

Byinterna uiz Avoid wrapping in complexity repartition ays ago % 14 Branches
Batest ui: Show components affected by one an... 5 days ago &7 50 Tags
£ airtoml Hot reload backend with air 1year ago & 1.4 GiB Project Storage

& A3 Releases
& .editorconfig Use 80 for the line length in editorconfig 5 months ago

8 Découverte de PostgreSQL Migrator

DALIBO Workshops

2.2 AMBITIONS (2/3)

Proposer une gouvernance solide

- Le projet rejoint le Dalibo Labs
- Travail conjoint entre les DBA et les DEV

- Itérations de deux semaines
- Intégration et livraison continues (CI/CD)

ETIENNE BERSAC . PIERRE GIRAUD o PIERRE-LOUIS GONON
etienne.bersac@dalibo.com pierre.giraud@dalibo.com pierre-

OO0OS 00 0O0O®0 louis.gonon@dalibo.com
090

@-& MARION GIUSTI = | = FLORENT JARDIN
" marion.giusti@dalibo.com =" florent.jardin@dalibo.com

000 000

Découverte de PostgreSQL Migrator

DALIBO Workshops

2.3 AMBITIONS (3/3)

Favoriser drastiquement la prise en main

Simplification de 'installation

Navigation graphique dans le modéle de données a convertir

Identification des points chaud du chantier

Peu de configurations superflues

Orchestration des taches de copie automatique et optimisée

Documentation

10 Découverte de PostgreSQL Migrator

DALIBO Workshops

2.4 FONCTIONNALITES (1/4)

Un binaire unique en Go

Aucune dépendance a installer sur le systéme
Pilotes communautaires: Oracle, MySQL

Ligne de commande simple et moderne
Serveur Web embarqué (Vue.js)

Découverte de PostgreSQL Migrator

11

DALIBO Workshops

2.5 FONCTIONNALITES (2/4)

Mode hors-ligne

- Inspection de la base source vers des fichiers JSON
- Exploitation des données sans besoin de connexion

- Analyse des points chauds
- Conversion du modeéle pour PostgreSQL au format SQL
- Versionnement pour le travail collaboratif

12 Découverte de PostgreSQL Migrator

DALIBO Workshops

2.6 FONCTIONNALITES (3/4)

Transfert des données performant

- Langage compilé
- Techniques de transfert optimisé

- COPY en flux continu
- Maitrise de la consommation mémoire

- Réutilisation des connexions ouvertes

- Support des BLOB/CLOB

B ora2pg

[l PostgreSQL Migrator

VITESSE DE COPIE

En tuple/seconde
112K

1270 1350

8 colonnes 80 colonnes LOB < 96k LOB > 1M

Découverte de PostgreSQL Migrator

DALIBO Workshops

8 colonnes

CONSOMMATION MEMOIRE

[l ora2pg
Bl PostgreSQL Migrator

En octets

80 colonnes

1,4G

571M

LOB < 96k LOB > 1M

14

Découverte de PostgreSQL Migrator

DALIBO Workshops

2.7 FONCTIONNALITES (4/4)

Interface graphique (Web)

Navigation dans les modéles source et cible

Définition des objets relationnels et procéduraux

Recherche globale
Aterme

- Assistant a la conversion
- Progression du transfert des données
- Edition / correction du code PL/pgSQL

Découverte de PostgreSQL Migrator

15

3/ Exercice #1

- Installation de PostgreSQL Migrator
- Inspection de la base source
- Générer un rapport d’évaluation

17

DALIBO Workshops

3.1 INSTALLATION DE POSTGRESQL MIGRATOR

Télécharger et installer la derniere version de 'outil

Se rendre sur la page du projet et télécharger le dernier paquet disponible pour Redhat. Les formats
.debet . rpmsont a privilégier.

- https://gitlab.com/dalibo/pg_migrate/-/releases/permalink/latest

$ v=1.0.0-beta.7
$ d=https://gitlab.com/dalibo/pg_migrate/-/releases/v${v}/downloads
$ sudo dnf -y dnstall ${d}/pg-migrate_${v}_linux_amd64.rpm

18 Découverte de PostgreSQL Migrator

https://gitlab.com/dalibo/pg_migrate/-/releases/permalink/latest

DALIBO Workshops

3.2 INSPECTER LE CATALOGUE

Découvrir les sous-commandes de l'outil.

PostgreSQL Migrator dispose d’une interface en ligne de commande (CLI) nommée pg_migrate.
Chaque étape du chantier de migration est rattachée a une des sous-commandes de la CLI.

$ pg_migrate --help
Usage: pg_migrate [OPTIONS] COMMAND

Commands:
convert Convert source catalog for PostgreSQL
dump Dumps a source database as text files or to stdin
init Initialize a new migration project
inspect Fetch and analyse source database catalog
report Generate a migration report
status Describe a migration project
ui Interactive audit web interface

Devant chaque sous-commande, il est possible de changer le comportement de la CLI avec les options
générales comme --verbose ou --plain.

General Options:
-C, --directory string Change to directory before doing anything

-?, ——help Print help and exit
--offline Prevent source database access
--plain Disable log coloration
--skip-date-warning Suppress the warning about outdated build
-v, --verbose Show debug log messages
-V, --version Print version and exit

Enfin, certaines variables d’environnement sont documentées et peuvent étre valorisées depuis le
contexte d’exécution.

Environment variables:

PGMDIRECTORY Change to directory before doing anything.
PGMOFFLINE Set to true prevent source database access.

Initialiser le répertoire de travail.

Pour chaque projet de migration, il est nécessaire d’initialiser un répertoire de travail a partir de la
chaine de connexion et d’un compte de connexion.
$ pg_migrate 1init --source oracle://hr:phoenix@localhost/hr atelier

09:54:08 INFO Opening database connection pool. key=source driver=oracle
< dsn=or:hr@localhost/hr

Découverte de PostgreSQL Migrator 19

DALIBO Workshops

09:54:08 INFO Connecting to database. key=source count=1

09:54:08 INFO Initialized migration project. source="Oracle Database 23ai Free"
< version=23.0.0.0.0 path=atelier

09:54:08 INFO Databases connections closed. source=1 target=0

Découvrir les fichiers du projet.

La commande init crée une série de fichiers dans le dossier de travail. Le dossier caché
.pg_migrate est garant de I’état du projet et ne doit pas étre modifié a la main.

Lefichier . env contient lesvariables d’environnement du projet, tel que PGMSOURCE qui correspond
au parametre --target de lacommande précédente. Enfin, le fichier pg_migrate.toml permet
de configurer le comportement de PostgreSQL Migrator durant toutes les étapes du projet.

atelier

—— Annotations.jq
— .env

— .gitignore

— .pg_migrate

L— Info.json
— pg_migrate.toml
— report.md.tmpl
— Summary.jq

— Total.jq

Les fichiers .jg et .md.tmpl sont respectivement les filtres pour manipuler les données JSON du
projet, et les templates pour la présentation de ces données.

Exécuter la commande d’inspection.

Avant toute chose, il faut se positionner dans le répertoire de travail, la ot lacommande pg_migrate
consulte les fichiers du dossier . pg_migrate et le contenu du fichier . env.

Lancer la sous-commande inspect. Si besoin, 'option —-verbose peut s’intercaler entre la com-
mande pg_migrate et la sous-commande.

$ cd atelier/

$ pg_migrate inspect

09:55:38 INFO Opening database connection pool. key=source driver=oracle
< dsn=or:hr@localhost/hr

09:55:38 INFO Connecting to database. key=source count=1
09:55:38 INFO Inspecting source database. driver=oracle
09:55:38 INFO Inspected metadata. instance=FREE software="Oracle

< Database 23ai Free" version=23.9.0.25.07
09:55:38 WARN Failed to query database size. err="0ORA-00942: table or view
< \"SYS\".\"DBA_SEGMENTS\" does not exist\n error occur at position: 44"

20 Découverte de PostgreSQL Migrator

DALIBO Workshops

09:55:38 INFO Found sequences. count=4
09:55:39 INFO Found procedures. count=2
09:55:39 INFO Found functions. count=2
09:55:39 INFO Found packages. count=2
09:55:39 INFO Found views. count=1
09:55:41 INFO Found tables. count=8
09:55:41 INFO Connecting to database. key=source count=5
09:55:41 INFO Found table triggers. count=6
09:55:47 INFO Found tables keys. count=9
09:55:49 INFO Found foreign keys. count=12
09:55:52 INFO Found tables checks. count=2
09:55:56 INFO Found tables -indexes. count=2
09:55:56 INFO Inspected schema. name=HR

Plusieurs avertissements s’affichent a ’écran pour nous informer que l'inspection a rencontré une ou
plusieurs erreurs a la lecture du catalogue distant. L'inspection est dite partielle, ce qui signifie que
des informations sont manquantes pour établir une évaluation compléte.

Dans le cas présent, le compte de connexion “HR” n’a pas les autorisations pour consulter les vues du
catalogue Oracle.

09:55:56 WARN Partial inspection. See errors below.

09:55:56 WARN You can use the catalog but some objects may be missing or incomplete.
09:55:56 WARN Ensure you have the necessary privileges.

09:55:56 WARN Soure database version may not be supported.

Linspection se poursuit avec une phase d’audit du catalogue extrait de la base distante. Cette étape
permet d’identifier des faiblesses du modele de données, ainsi que les complications éventuelles lors
de la conversion. Durant cette étape, chaque composant (table, vue, index, procédure stockée) se voit
attribué un score de complexité ainsi qu’une série d’annotations si nécessaire.

Une premiére conversion du modeéle est réalisée dans la foulée. Cette opération va consulter le
catalogue local de la base source, contenu dans le fichier .pg_migrate/Source.json pour
en produire le fichier .pg_migrate/Target.json. Il contient la méme structure que le fichier
Source. json mais avec certaines conversions génériques.

09:55:56 INFO Auditing catalog. driver=oracle

09:55:56 INFO Catalog audited.
09:55:56 INFO Converted catalog for PostgreSQL.

09:55:56 INFO Auditing catalog. driver=oracle
09:55:56 WARN Target catalog has pending annotations. count=16
09:55:56 INFO Databases connections closed. source=5 target=0

Recommencer 'inspection avec un compte privilégié.

Relancer la commande 1init depuis le répertoire pour modifier le compte de connexion. Un compte

Découverte de PostgreSQL Migrator 21

DALIBO Workshops

privilégié comme system ne rencontrera pas les erreurs d’inspection. Il est aussi possible d’octroyer
les bons privileges au compte hr en respectant les prérequis indiqués dans la documentation?.

$ pg_migrate 1init --source oracle://system:manager@localhost/hr
Relancer l'inspection. Le catalogue ainsi extrait est stocké dans lefichier . pg_migrate/Source.json.

$ pg_migrate tinspect

thttps://postgresql-migrator.readthedocs.io/en/latest/references/requirements/

22 Découverte de PostgreSQL Migrator

https://postgresql-migrator.readthedocs.io/en/latest/references/requirements/

DALIBO Workshops

3.3 CREATION DU RAPPORT D’EVALUATION
Exécuter la sous-commande report depuis votre répertoire de travail.

$ pg_migrate report

16:25:41 INFO Generating JSON report. report=Annotations.json

< filter=Annotations.jq

16:25:41 INFO Generating JSON report. report=Summary.json filter=Summary.jq
16:25:41 INFO Generating JSON report. report=Total.json filter=Total.jq
16:25:41 INFO Generating Markdown report. report=report.md

< template=report.md.tmpl

Consulter librement le contenu du rapport nommé report.md. Un tableau récapitulatif reprend
le décompte des composants du catalogue, leur taille si applicable, leur score et le nombre
d’annotations pour chaque catégorie.

Object Count Size Score Annotations
Roles 2 2.0 0
Schemas 1 0.1 0
Sequences 4 0.4 0
Tables 8 1.2GB 258 7
Triggers 6 12.7 4
Views 1 8.1 1
Indexes 13 4.1MB 2.7 0
Procedures 2 4.7 0
Functions 2 4.9 0
Packages 2 59.8 5

Plus bas, une liste des annotations est fournie pour mettre en lumiére les principales causes de la
complexité de la base de donnée.

2 Column with missing precision.

1 View with read only view.

1 Package with transqlate: NULL comparison on identifier.

2 Procedure with transglate: NULL comparison on identifier.

4 Trigger with transqlate: NULL comparison on identifier.
1 Column with type CLOB.

Découverte de PostgreSQL Migrator 23

DALIBO Workshops

- 2 Package with unparsed statements.

Enrichir le rapport en ajoutant un décompte des colonnes par type de données.

Ilest possible de composer un rapport en manipulant deux catégories de fichiers. La nature flexible et
programmable de ce mécanisme de composition vous permet d’enrichir le rapport avec les données
de votre choix.

- Lesfiltres . jq permettent de réduire et de manipuler des données brutes au format JSON, ici
Source.json;

- Lestemplates .md . tmplincorporent les données filtrées dans un fichier final au format Mark-
down.

Nous souhaitons décompter les nombres de colonnes en fonction de leur type de données. Poury
parvenir, créer un fichier Types. jq dans le projet avec le contenu suivant:

[$Source[].Tables[]?.Columns[].Type.Name]
| group_by(.)

| map({Name: .[0], Count: length})

| sort_by(.Count)

| reverse

Ce filtre liste les types des toutes les colonnes de table du fichier Source. json et les regroupe par
nom en créant un tableau associatif trié. Ce tableau peut ensuite étre manipulé dans un template a
laide d’une boucle range. Consulter la documentation text/template? du langage Go pour plus de
précision.

Modifier le fichier report.md.tmp1l en ajoutant le bout de code suivant:

Types de colonnes

{{ range Stype := .Types }}
- {{ $type.Count }} {{ Stype.Name }}
{{- end }}

Exécuter a nouveau la sous-commande report.

Le moteur de rapport détecte que le template a été modifié et s’appuie sur la donnée du fichier
Types.json, lui-méme déclaré par le filtre Types.jq. Le fichier intermédiaire est créé et le
rapport report.md est mis a jour avec la nouvelle section « Types de colonnes ».

$ pg_migrate report

15:18:17 INFO Generating JSON report. report=Types.json filter=Types.jq

15:18:17 INFO Generating Markdown report. report=report.md
< template=report.md.tmpl

Zhttps://pkg.go.dev/text/template

24 Découverte de PostgreSQL Migrator

https://pkg.go.dev/text/template

DALIBO Workshops

La base HR contient 21 colonnes, dont la répartition par type est listée ci-dessous.

19 NUMBER
15 VARCHAR2
4 DATE

2 CHAR
1CLOB

Découverte de PostgreSQL Migrator

25

4/ Exercice #2

- Ecrire des régles de conversion
- Naviguer dans l'interface graphique
- Exporter le modele dans des fichiers plats

27

DALIBO Workshops

4.1 CONVERSIONS GENERIQUES

Exécuter lacommande pg_migrate convert --refreshenmode verbeux.

Se positionner dans le dossier du projet et relancer une opération de conversion. La page de docu-
mentation! décrit les conversions génériques réalisées durant cette étape.

$ pg_migrate --verbose convert --refresh

from=CHAR(2) to=char(2) path=Tables/HR.COUNTRIES/Columns/COUNTRY_ID
from=VARCHAR2 (60) to=varchar(60) path=Tables/HR.COUNTRIES/Columns/COUNTRY_NAME
from=NUMBER to=numeric path=Tables/HR.COUNTRIES/Columns/REGION_ID
from="NUMBER (4, 0)" to=smallint path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID
.. from=VARCHAR2(30) to=varchar(30)
< path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_NAME
from="NUMBER (6, 0)" to=1integer path=Tables/HR.DEPARTMENTS/Columns/MANAGER_ID

Le mode verbeux vous donne plus de détails sur les modifications opérées. Par exemple, les types
NUMBER (6, 0) d’Oracle sont convertis en integer. Loption ——verbose est globale et se posi-
tionne avant la sous-commande. La deuxiéme option —-refresh est propre a la sous-commande
et se positionne apres cette derniére. Elle force la réécriture intégrale du fichier Source. json.

Une exploration plus périlleuse des fichiers JSON est tout a fait possible. L'exemple ci-dessous permet
de cibler les différences entre les deux fichiers pour la colonne employees.employee_1id.

$ expr='.Tables[].Columns[] | select(.objectPath |

< match("Tables/hr.employees/Columns/employee_id";"i")) | .Type'
$ diff <(jg -r "Sexpr" .pg_migrate/Source.json) <(jq -r "$expr"

< .pg_migrate/Target.json)

2,6c2
< "Name": "NUMBER",
< "Params": [

< "e",

< "e"

<]

> "Name": "integer"

Thttps://postgresql-migrator.readthedocs.io/en/latest/references/conversion/

28 Découverte de PostgreSQL Migrator

https://postgresql-migrator.readthedocs.io/en/latest/references/conversion/

DALIBO Workshops

4.2 NAVIGUER DANS LINTERFACE GRAPHIQUE

Exécuter lacommande pg_migrate ui.

Loutil PostgreSQL Migrator embarque un serveur web interne pour présenter le contenu des fichiers
JSON sous une forme graphique et interactive. La page d’accueil vous fournit les éléments clés
de linspection, similaire au rapport Markdown généré précédemment. Sur la page d’accueil, on'y
retrouve la version du moteur, le poids cumulé des tables et des index, la somme du nombre de

lignes issues des composants procéduraux, etc.

o

PostgreSQL Migrator

lals Overview
Inspection
= @rEk @, Oracle 23.9.0.25.07 ® Post
.9.0.25. greSQL
= o .
Conversion BEUEE arget
5= PostgreSQL (2] 13 Annotations [10 Annotations
Instance Metrics
& 4 ®
1.2GB 105.8 214 lines 30 lines
Components Repartition Most complex objects
HR. EMP_MGMT !]
2 2Roles <» 73 lines

@ 123 4 Sequences

@ (5 2 Tables

@ B 2 Packages

' @ {} 2 Procedures
F 2 Functions

@ 2 Other

© About

Consulter tous les composants de la base de données.

Naviguer a lintérieur de la base Oracle pour obtenir la liste de ses objets. Il est possible de filtrer
depuis une barre de recherche pour accéder a un objet en particulier. Si vous tapez le mot « history »
dans la recherche globale, un résultat s’affiche pour lister les composants comportant ce mot dans
leur définition ou la définition de leur parent.

I Trier par score.

Le score d’un composant est calculé selon plusieurs criteres, tels que son type, le nombre de colonne
ou des lignes de codes qui le constituent. Un tableau récapitulatif de tous les scores est accessible sur
une page de la documentation?. La somme de tous les scores permet de déterminer la complexité de

Zhttps://postgresql-migrator.readthedocs.io/en/latest/references/toml/#scores-section

Découverte de PostgreSQL Migrator 29

https://postgresql-migrator.readthedocs.io/en/latest/references/toml/#scores-section

DALIBO Workshops

la migration d’une base de données dans son ensemble. Les composants dont les scores sont les plus
élevés, sont a priori les plus complexes a porter vers PostgreSQL.

S

(Q Search Oracle catalog for...

@ FREE / Oracle

PostgreSQL Migrator g FREE

il Overview Components Annotations @B
Inspection Y 4 score ~ =l 4 105.8Complexity
13 Annotations
& GrEE HR . EMP_MGMT a "
2 Roles 4 procedures - 2 functions <» 73 lines Metrics
B HR.EMP_ACTIONS
O Schemas 2l 2 procedures - 2 functions <> 38 lines <> 217 lines
123 Sequences > HR.EMP_DETAILS_VIEW & 1268
16 columns <> 30 lines
Composed b
E5 Tables B o HR.EWPLOYEES poey
& views 4 indexes - 11 columns - 3 foreignkeys - 3 triggers & 128KB <> 12lines = 907 rows 8 tables
| HR. JOB_EVALUATIONS 1 view
2] Indexes 2 indexes - 6 columns - 2 foreignkeys - 1 triggers & 1.2GB <>5lines = 45K rows
2 packages
| Tri | HR.LOCATIONS
B riggers 3 indexes - 6 columns - 1 foreignkeys - 1 triggers & 128KE (>Slines @ 15Krows 2 procedures
[3) Packages [] g HR.DEPARTMENTS 2 functions
a— 1 indexes - 4 columns - 2 foreignkeys - 1 triggers 4 64KB <> Slines 1= 27 rows 7 other components
{1 HR.ADD_JOB_HISTORY(job_history.employee_id%type, job_history.start_date%type, job_h.. g
F Functions 5 parameters < 13lines Convertedto
HR.EMP_SAL_RANKING (NUMBER) NUMBER £ PostgresqQL
F
Comesier 1 parameters <> 17 lines
#2 PostgreSQL 5 HR.LAST_FIRST_NAME (NUMBER) VARCHAR2
1 parameters <> 10 lines
HR.SECURE_DML
{} <> 9lines
© About g HR.JOB_HISTORY
3 indexes - 5 columns - 3 foreignkevs & 2MB = 28K rows

I Consulter la définition de la table EMPLOYEES.

Cliquer sur la table HR.EMPLOYEES de la liste et sélectionner le tri par défaut. Les composants
représentent tout objet rattaché dans la table, comme les colonnes, les index ou les triggers. Longlet
« JSON » fournit le détail du composant, tel que présenté dans le fichier d’inventaire.

30 Découverte de PostgreSQL Migrator

DALIBO Workshops

o

PostgreSQL Migrator

lils Overview
Inspection

& Oracle
= Roles
[3 Schemas

123 Sequences

EB Tables a

& Views
8] Indexes

ER, Triggers

{} Procedures

F Functions
Conversion

32 PostgreSQL

© About

(Q Search Oracle catalog for..

FREE / Oracle / Tables / HREMPLOYEES

B8 HR.EMPLOYEES

Components Properties JSON

Annotations @

Packages [¢]

? D D D O D @ @ O m m m 4

EMPLOYEE_ID NUMBER(G5, @)

FIRST_NAME VARCHAR2(20)

LAST_NAME VARCHAR2(25)

EMATIL VARCHAR2(25)

PHONE_NUMBER VARCHAR2(202)

HIRE_DATE DATE

JOB_ID VARCHAR2(10)

SALARY NUMBER(Z, 2)

COMMISSION_PCT NUMBER(Z, 2)

MANAGER_ID NUMBER(G, 0)

DEPARTMENT_ID NUMBER(4, 0)

EMP_EMAIL_UK UNIQUE (EMAIL)
1 columns

EMP EMP TD PK PRTMARY KFY (EMPLOYEF TD)

I Consulter la version convertie de la table EMPLOYEES.

Default v

4 8 Complexity
B8 1 Annotation

Metrics

<> 12lines

i 128KB

= 907 rows
Composed by

4 indexes

11 columns

3 foreignkeys

3 triggers

3 other components
References

FB HR.DEPARTMENTS

EH HRJOBS

BB HREMPLOYEES

Converted to

FB hremployees

Dans la colonne de droite, un lien permet d’aller vers la définition de l'objet converti. Ony retrouve

les conversions de colonnes NUMBER (6, 0) eninteger.

o

PostgreSQL Migrator

lil, Overview
Inspection
 Oracle

Conversion

e

2 PostgreSQL
= Roles
[Schemas

123 Sequences

EB Tables [!]

8] Indexes

ER, Triggers

© About

FREE / PostgreSQL / Tables / hremy

Components Properties JSON

(Q Search PostgreSQL catalog for...

BB hr.employees

Annotations @

? D D @ O D @ ® W m m m 4

employee_id integer
first_name varchar(20)
last_name varchar(25)

email varchar(25)
phone_number varchar(20)
hire_date timestamp

job_id varchar(10)

salary numeric(8, 2)
commission_pct numeric(2, 2)
manager_id integer

department_id smallint

emp_email_uk UNIQUE (email)
1 columns

emp emn id ok PRTMARY KEY (emnlovee id)

Default v

4 4.6 Complexity

B 2 Annotations
Metrics

& 128kB

i= 907 rows
Composed by

4indexes

11 columns

3 foreignkeys

4 other components
References

B hrdepartments

B hrjobs

BB hremployees

Converted from

EE HREMPLOYEES

Découverte de PostgreSQL Migrator

31

DALIBO Workshops

4.3 PROCEDER A DES MODIFICATIONS DU MODELE

Renommer le schéma HR en public.

Ilest possible de définir des conversions personnalisées avec le fichier de configurationpg_migrate. toml.
Chaque composant du modeéle source dispose d’un chemin unique (le path) pour le distinguer et

lui appliquer des transformations. Editer le fichier avec un éditeur de texte et copier les lignes
suivantes:

[[Convert.Rules]]
Path = '"Schemas/HR"
Name = "public"

Déclarer toutes les colonnes faisant référence a DEPARTMENTS . DEPARTMENT_ID en inte-
ger.

Nous voulons définir des régles de transformation sur les colonnes de certaines tables. Editer a nou-
veau le fichier pg_migrate. toml.

[[Convert.Rules]]
Path = "Tables/HR.EMPLOYEES/Columns/DEPARTMENT_ID"
Type = "integer"

[[Convert.Rules]]
Path = "Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID"
Type = "integer"

[[Convert.Rules]]
Path = "Tables/HR.JOB_HISTORY/Columns/DEPARTMENT_ID"
Type = "integer"

Déclarertoutesles colonnesdetype DATE endate, sauf pourlacolonne JOB_EVALUATIONS.EVALUATION_D/
qui devra étre convertie en timestamp without time zone.

Larégle Convert.DataTypes surcharge les conversions génériques et sera appliquée pour toutes
les colonnes dont le type est déclaré a la gauche du symbole «=». La casse est ignorée.

[Convert.DataTypes]
"DATE" = "date"

[[Convert.Rules]]
Path = "Tables/HR.JOB_EVALUATIONS/Columns/EVALUATION_DATE"
Type = "timestamp without time zone"

32 Découverte de PostgreSQL Migrator

DALIBO Workshops

N’oubliez pas de relancer une conversion du modeéle afin que la configuration puisse étre prise en
compte. Pour aller plus loin, une page de documentation?® reprend les syntaxes et les régles de trans-
formation possibles.

$ pg_migrate --verbose convert --refresh

Overriding datatype rule. match=date
Converting object identifier. from=HR to=public path=Schemas/HR
Converting column type. from="NUMBER(4, 0)" to=bigint
< path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID
.. Converting column type. from="NUMBER(4, 0)" to=bigint
< path=Tables/HR.EMPLOYEES/Columns/DEPARTMENT_ID
.. Converting column type. from="NUMBER(4, 0)" to=bigint
< path=Tables/HR.JOB_HISTORY/Columns/DEPARTMENT_ID
.. Converting column type. from=DATE to="timestamp without time zone"
< path=Tables/HR.JOB_EVALUATIONS/Columns/EVALUATION_DATE
.. Converting column type. from=DATE to=date
< path=Tables/HR.EMPLOYEES/Columns/HIRE_DATE
.. Converting column type. from=DATE to=date
< path=Tables/HR.JOB_HISTORY/Columns/START_DATE
Converting column type. from=DATE to=date

< path=Tables/HR.JOB_HISTORY/Columns/END_DATE

3https://postgresql-migrator.readthedocs.io/en/latest/references/toml/#convertrules

Découverte de PostgreSQL Migrator 33

https://postgresql-migrator.readthedocs.io/en/latest/references/toml/#convertrules

DALIBO Workshops

4.4 GENERER LE MODELE DE DONNEES CONVERTI AU FORMAT SQL

I Consulter les annotations du modéle converti.

Revenez sur la page d’accueil pour naviguer dans le catalogue PostgreSQL. L'onglet « Annotations »
vous révele les actions requises avant l’'export, ainsi que les fonctionnalités non implémentées de
PostgreSQL Migrator.

CQ Search PostgreSQL catalog for...)

J
FREE / PosigresOl

PostgreSQL Migrator g FREE

il Overview Components Annotations @
Inspection not implemented conversion: triggers =~ 4 Y Default ~
£ Oracle .
= SiEEtE @ public.departments
e not implemented dump: checks 2 1 indexes - 4 columns - 2 foreignkeys & 64KB = 27 rows
= PostgresqlL 2 tables =) public.employees B
4 indexes - 11 columns - 3 foreignkeys 4 128KB 1= 907 rows

o not implemented conversion: views L. .
= Roles public.job_evaluations

1 undefined B’ N .

2 indexes - 6 columns - 2 foreignkeys dh 1.2GB = 45K rows
3 Schemas not implemented conversion: procedures . .
@m public.locations

123 Sequences T undefined 3 indexes - 6 columns - 1 foreignkeys & 128KB = 1.5K rows

not implemented conversion: functions
EB Tables n 1 undefined
2] Indexes not implemented conversion: packages

1 undefined
ER Triggers
o About

Loutil est réglé pour ne pas exporter le schéma et ses données s’il existe des annotations non prises
en compte. Un message d’erreur survient lors de I’export avec lacommande pg_migrate dump.

$ pg_migrate dump
15:59:13 ERROR Target model has pending annotations. len=16
15:59:13 ERROR Use --force to dump anyway.

Pourignorer ce comportement, nous allons ajouter uneinstruction danslefichierpg_migrate. toml.

[Dump]
Force = true

Exécuter lacommande pg_migrate dump --target files --schema-only.

La sous-commande dump est responsable de I'export des objets et de leurs données dans un format
SQL compatible avec PostgreSQL. L'option -—target permet de définir ’endroit ou seront écrites les

34 Découverte de PostgreSQL Migrator

DALIBO Workshops

instructions. Pour le moment, nous souhaitons un apercu des structures converties dans des fichiers
plats.

$ pg_migrate dump --target files --schema-only
17:22:58 INFO Writing queries to dump/ directory.

17:22:58 INFO Create role. name=pdbadmin path=00002-Roles-pdbadmin-create.sql
17:22:58 INFO Create role. name=hr path=00001-Roles-hr-create.sql

17:22:58 INFO Create schema. name=public path=00003-Schemas-public-create.sql
17:22:58 INFO Create table. name=public.employees

< path=00006-Tables-public.employees-create.sql

17:22:58 INFO Create table. name=public.jobs

< path=00007-Tables-public.jobs-create.sql

17:22:58 INFO Create table. name=public.departments

< path=00005-Tables-public.departments-create.sql

17:22:58 INFO Create table. name=public.locations

< path=00009-Tables-public.locations-create.sql

17:22:58 INFO Create table. name=public.countries

< path=00004-Tables-public.countries-create.sql

17:22:58 INFO Create table. name=public.job_history

< path=00008-Tables-public.job_history-create.sql

17:22:58 INFO Create sequence. name=public.locations_seq.

< path=00014-Sequences-public.locations_seq-create.sql
17:22:58 INFO Create sequence. name=public.evaluations_seq.
< path=00013-Sequences-public.evaluations_seq-create.sql
17:22:58 INFO Create table. name=public.regions

- path=00010-Tables-public.regions-create.sql

17:22:58 INFO Create sequence. name=public.employees_seq.
< path=00012-Sequences-public.employees_seq-create.sql
17:22:58 INFO Create sequence. name=public.departments_seq.
< path=00011-Sequences-public.departments_seq-create.sql

Loption --schema-only est similaire a celle de l'outil pg_dump. Il s’agit d’un raccourci pour les op-
tions--section=pre-dataet--section=post-data. N’hésitez pasa consulter 'aide depuis
la ligne de commande pour plus de détails.

$ pg_migrate dump --help
Usage: pg_migrate [OPTIONS] dump [OPTIONS]

Generates DDL and/or COPY for target PostgreSQL.

Executes statements in defined PostgreSQL target database
or writes to stdout or files.

Requires successful convert.

Options:
-c, --clean clean (drop) objects before recreating
or truncate table before copy

Découverte de PostgreSQL Migrator 35

DALIBO Workshops

-a, —--data-only
-f, --force
-?, ——help
-j, ——jobs 1int

--refresh-stats

-s, —--schema-only

--section string
--target string

dump only the data, not the schema

ignore unhandled annotations

Show help

use this many parallel jobs to dump (default 4)

refresh table statistics before planning dump (default true)
dump only the schema, no data

dump named section (pre-data, data, post-data)

DSN for query execution

--target can be stdout, files or a PostgreSQL DSN.

If stdout 1is not a terminal, writes to stdout.
Else if PGMTARGET is defined, sends to PostgreSQL target database.
Force file output with --target=files.

See pg_migrate --help for more informations.

Consulter les fichiers présents dans le répertoire dump/.

Les fichiers SQL générés par la commande précédente sont accessibles depuis le dossier dump/ du

répertoire de travail.

$ tree dump/
dump/
00001-Roles-hr-create.sql
00002-Roles-pdbadmin-create.sql
00003-Schemas-public-create.sql

00004-Tables-public.
00005-Tables-public.
00006-Tables-public.
00007-Tables-public.
00008-Tables-public.
00009-Tables-public.
00010-Tables-public.
00011-Tables-public.

20029-Tables-public.
20030-Tables-public.
20031-Tables-public.
20032-Tables-public.
20033-Tables-public.
20034-Tables-public.

countries-create.sql
departments-create.sql
employees-create.sql
job_evaluations-create.sql
job_history-create.sql
jobs-create.sql
locations-create.sql
regions-create.sql

job_evaluations-ForeignKeys-eval_employee_fk-create.sql
job_evaluations-ForeignKeys-eval_evaluator_fk-create.sql
job_history-ForeignKeys-jhist_dept_fk-create.sql
job_history-ForeignKeys-jhist_emp_fk-create.sql
job_history-ForeignKeys-jhist_job_fk-create.sql
locations-ForeignKeys-loc_c_id_fk-create.sql

La table employees est conforme a ce que nous attendions. Le schéma de destination est bien

public et les colonnes department_id et hire_date sont respectivement de type integer
etdate.

36

Découverte de PostgreSQL Migrator

DALIBO Workshops

-— Name: employees; Type: TABLE; Schema: public; Owner:

CREATE TABLE "public"."employees" (
"employee_id" dinteger,
"first_name" varchar(20),
"last_name" varchar(25),
"email" varchar(25),
"phone_number" varchar(20),
"hire_date" date,

"job_id" varchar(10),

"salary" numeric(8, 2),
"commission_pct" numeric(2, 2),
"manager_id" -dinteger,
"department_id" -dinteger

)

unknown

Découverte de PostgreSQL Migrator

37

5/ Exercice #3

- Création des tables
- Copie des données
- Création des index et des contraintes

39

DALIBO Workshops

5.1 CONFIGURATION DE LA BASE CIBLE

Démarrer 'instance PostgreSQL.

Si ce n’est pas déja le cas, démarrer le conteneur PostgreSQL dans lequel nous réaliserons la copie
des données. Lauthentification trust est active et permet de ne pas s’'encombrer d’un mot de passe
(mais ne le faites pas chezvous!).

$ sudo docker compose up -d postgres

Créer une nouvelle base nommée hr.

La base hr doit étre créée comme suit. Le compte postgres en est le propriétaire durant la phase de
migration et pourra étre changé a posteriori.

$ sudo docker compose exec -ti postgres createdb -U postgres hr

Configurer le projet pour se connecter a 'instance.

Pour la suite des commandes, nous souhaitons renseigner I'adresse de connexion de cette nouvelle
instance pour que PostgreSQL Migrator y crée les composants a notre place. Lancer une initialisation
avec un nouvel argument —-target depuis le répertoire de projet.

$ pg_migrate init \

--source=oracle://system:manager@localhost/hr \
--target=postgres://postgres@localhost/hr

Cela revient a ajouter contrdler I'acces et authentification a 'instance avant d’ajouter une ligne dans
le fichier . env. La variable d’environnement PGMTARGET est alors disponible pour déterminer la
destination des instructions SQL lors de l'exécution de la commande pg_migrate dump.

$ cat .env
PGMSOURCE=oracle://system:manager@localhost/hr
PGMTARGET=postgresql://postgres@localhost/hr

40 Découverte de PostgreSQL Migrator

DALIBO Workshops

5.2 CREATION DES TABLES

La premiére étape de la migration consiste a créer les tables converties dans la base vierge. Nous
aurions pu utiliser les fichiers plats exportés précédemment avec l'option ——target=files, nous
jugeons que PostgreSQL Migrator peut s’en charger aussi bien avec son moteur interne d’exécution et
d’orchestration.

Exécuter lacommande pg_migrate dump --section=pre-data.

La phase dite « pre-data » réunit les composants initiaux qui accueilleront la donnée (comme les sché-
mas et leurs tables), ainsi que tout autre composant dont la structure peut étre définie sans relation
avec de la donnée (comme les rdles, les séquences ou les vues).

$ pg_migrate dump --section=pre-data

17:11:14 WARN Ignoring unhandled annotations 1in target model. len=10
17:11:14 INFO Executing queries in target PostgreSQL.

17:11:14 INFO Create role. name=pdbadmin sn=00002

17:11:14 INFO Create schema. name=public sn=00003

17:11:14 INFO Create role. name=hr sn=00001

17:11:14 INFO Create table. name=public.jobs sn=00009

17:11:14 INFO Create table. name=public.job_evaluations sn=00007
17:11:14 INFO Create table. name=public.departments sn=00005
17:11:14 INFO Create table. name=public.regions sn=00011
17:11:14 INFO Create table. name=public.employees sn=00006
17:11:14 INFO Create table. name=public.locations sn=00010
17:11:14 INFO Create table. name=public.job_history sn=00008
17:11:14 INFO Create table. name=public.countries sn=00004
17:11:14 INFO Create sequence. name=public.locations_seq. sn=00015
17:11:14 INFO Create sequence. name=public.evaluations_seq. sn=00014
17:11:14 INFO Create sequence. name=public.employees_seq. sn=00013
17:11:14 INFO Create sequence. name=public.departments_seq. sn=00012

Controler la structure de la table public.employees.

Utiliserlacommandedocker compose exec pourinteragiravec l'instance du conteneur et linvite
psql. Latable employees est conforme aux conversions vues précédemment.

$ sudo docker compose exec -ti postgres psql -U postgres -d hr -c "\d
< public.employees"
Table "public.employees"

Column Type | Collation
employee_-id
first_name
last_name

character varying(20)

"
integer |
I
character varying(25) |

Découverte de PostgreSQL Migrator 41

DALIBO Workshops

commission_pct numeric(2,2)
integer

integer

manager_id
department_-id

email | character varying(25)
phone_number | character varying(20)
hire_date | date
job_id | character varying(10)
salary | numeric(8,2)

I

I

|

42 Découverte de PostgreSQL Migrator

DALIBO Workshops

5.3 COPIE DES DONNEES

L’étape suivante va alimenter les tables PostgreSQL avec les données en provenance des tables Ora-
cle. Lorchestrateur interne sélectionne les tables les plus volumineuses en priorité et crée autant de
processus que définis par 'argument --jobs (4 par défaut).

Exécuter lacommande pg_migrate dump --data-only.

Loption -—data-only est équivalente a ——section=data. Si vous souhaitez recommencer la
copie intégrale des tables, loption ——clean ajoutera une instruction truncate avant chaque table.
Toutefois, assurez-vous de ne pas avoir créé de contraintes de clé étrangere.

Enfin, il est possible de désactiver la collecte des statistiques avec loption --refresh-
stats=false s’il y a eu peu de changement entre deux exports. Les statistiques servent a
déterminer la priorité des tables entre elles.

$ pg_migrate dump --section=data
17:35:17 INFO Executing queries in target PostgreSQL.
17:35:17 INFO Collecting statistics, this may take a while...

Alissue du traitement d’une table, une série de métriques permet d’appréhender le débit de transfert
pour cette migration et d’envisager des optimisations pour tenter d’accélérer la phase de copie des
données.

. table=public.regions elapsed=80ms data=54B rows=5 rate="62 rows/s" sn=10008
.. table=public.departments elapsed=90ms data=643B rows=27 rate="300 rows/s"
< sn=10002

. table=public.jobs elapsed=10ms data=1.1KB rows=29 rate="2.9K rows/s" sn=10006
.. table=public.employees elapsed=50ms data=78KB rows=907 rate="18.1K rows/s"
< sn=10003

. table=public.locations elapsed=60ms data=68.2KB rows=1523 rate="25.4K rows/s"
<~ sn=10007

. table=public.countries elapsed=10ms data=577B rows=35 rate="3.5K rows/s" sn=10001
.. table=public.job_history elapsed=390ms data=1.6MB rows=28010 rate="71.8K rows/s"
< sn=10005

. table=public.job_evaluations elapsed=17.17s data=401.5MB rows=45000 rate="2.6K
< rows/s" sn=10004

Un résumé de ’'ensemble est fourni dés que la derniére table a été traitée. Il permet de contrdler que
le débit global est satisfaisant et de connaitre la quantité de mémoire consommeée au plus haut de
lactivité de transfert (memory peak).

17:35:40 INFO Copy completed. tables=8 data=403.1MB elapsed=17.62s
< throughput=17.1MB/s jobs=4 mem=37.2MB

Découverte de PostgreSQL Migrator 43

DALIBO Workshops

Une des taches de copie consiste a rattraper les valeurs pour toutes les séquences du modeéle con-
verti.

17:35:23 INFO Restart sequences. schema=public sn=10009

44 Découverte de PostgreSQL Migrator

DALIBO Workshops

5.4 CREATION DES INDEX ET DES CONTRAINTES

Exécuter lacommande pg_migrate dump --section=post-data.

La création des index et l’'activation des contraintes des tables arrivent en derniere étape, celle dite

« post-data ». Durant cette étape, l'intégrité des données est mise a ’épreuve avec la validation des

références de clés étrangéres ou de l'unicité des données de colonne.

L'orchestrateur interne de PostgreSQL Migrator se charge de construire les index et les clés primaires

en priorité et résout les dépendances croisées entre tables référencées pour limiter le risque de ver-

rous (deadlocks).

$ pg_migrate dump --section=post-data
:02:53 INFO Executing queries in target PostgreSQL.

09
09

o

09:

[

09:

[

09:

[

09:

Y

09:

S

09:

Y

09:

<

09:

Y

09:

o

09:

o
09

o

09:

[

09:

[N

09:

S

09:

Y

:02:53 INFO Create table key.
sn=20007

02:53 INFO Create table key.
sn=20009

02:53 INFO Create table key.
key=eval_id_pk sn=20005

02:53 INFO Create table key.
key=dept_id_pk sn=20002

02:53 INFO Create table key.
key=emp_email_uk sn=20003

02:53 INFO Create table key.
sn=20008

02:53 INFO Create table key.
key=jhist_emp_id_st_date_pk sn=20006

02:53 INFO Create table key.
key=country_c_id_pk sn=20001

02:53 INFO Create table key.
key=emp_emp_id_pk sn=20004

02:53 INFO Create Index.
idx=departments_location_id_idx sn=20010

02:53 INFO Create Index.
idx=locations_city_idx sn=20020

:02:53 INFO Create Index.
idx=employees_department_id_idx sn=20011

02:53 INFO Create foreign key.
fk=countr_reg_fk sn=20023

02:53 INFO Create Index.
idx=employees_job_id_idx sn=20012

02:53 INFO Create Index.
idx=locations_country_id_idx sn=20021

02:53 INFO Create Index.
idx=employees_manager_id_idx sn=20013

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

name=public.

jobs key=job_id_pk

regions key=reg_id_pk

job_evaluations

departments

employees

locations key=loc_id_pk

job_history

countries

employees

departments

locations

employees

countries

employees

locations

employees

Découverte de PostgreSQL Migrator

45

DALIBO Workshops

09:02:53 INFO Create Index. name=public.locations

< ddx=locations_state_province_idx sn=20022

09:02:53 INFO Create Index. name=public.employees

< ddx=employees_last_name_first_name_idx sn=20014

09:02:53 INFO Create foreign key. name=public.departments

< fk=dept_loc_fk sn=20024

09:02:53 INFO Create foreign key. name=public.locations fk=loc_c_id_fk
< sSn=20034

09:02:53 INFO Create Index. name=public.job_history

< ddx=job_history_department_id_idx sn=20017

09:02:53 INFO Create foreign key. name=public.departments

< fk=dept_mgr_fk sn=20025

09:02:53 INFO Create Index. name=public.job_evaluations
< ddx=job_evaluations_employee_id_idx sn=20015

09:02:53 INFO Create foreign key. name=public.employees fk=emp_dept_fk
<~ sSn=20026

09:02:53 INFO Create foreign key. name=public.employees fk=emp_job_fk
< sSn=20027

09:02:53 INFO Create foreign key. name=public.employees

< fk=emp_manager_fk sn=20028

09:02:53 INFO Create Index. name=public.job_history

< ddx=job_history_employee_id_idx sn=20018

09:02:53 INFO Create Index. name=public.job_history

< ddx=job_history_job_id_idx sn=20019

09:02:53 INFO Create Index. name=public.job_evaluations
< ddx=job_evaluations_evaluator_id_idx sn=20016

09:02:53 INFO Create foreign key. name=public.job_history

< fk=jhist_dept_fk sn=20031

09:02:53 INFO Create foreign key. name=public.job_evaluations
< fk=eval_employee_fk sn=20029

09:02:53 INFO Create foreign key. name=public.job_history

» fk=jhist_emp_fk sn=20032

09:02:53 INFO Create foreign key. name=public.job_evaluations
« fk=eval_evaluator_fk sn=20030

09:02:53 INFO Create foreign key. name=public.job_history

< fk=jhist_job_fk sn=20033

Controler la structure de la table public.employees.

Les tables disposent bien de leur clé primaire et index. Les références de clé étrangeres sont en place.
Aucune erreur n’a été observée durant la phase post-data, les données sont cohérentes entre elles.

$ sudo docker compose exec -ti postgres psql -U postgres -d hr -c "\d
< public.employees"
Table "public.employees"
Column | Type | Collation | Nullable | Default
———————————————— B e e et e e PR ST e e e

46 Découverte de PostgreSQL Migrator

DALIBO Workshops

employee_id |
first_name |
last_name |
email |
phone_number |
hire_date |
job_id |
salary |
commission_pct |
manager_id |
department_id |
Indexes:

"emp_emp_id_pk" PRIMARY KEY, btree (employee_id)
"emp_email_uk" UNIQUE CONSTRAINT, btree (email)

integer
character
character
character
character
date
character
numeric(8,
numeric(2,
integer
integer

varying(20)
varying(25)
varying(25)
varying(20)

varying(10)
2)
2)

not null

"employees_department_id_idx" btree (department_-id)
"employees_job_id_idx" btree (job_id)

"employees_last_name_first_name_idx" btree (last_name, first_name)
"employees_manager_id_idx" btree (manager_id)

Foreign-key constraints:
"emp_dept_fk" FOREIGN KEY (department_id) REFERENCES departments(department_id)
"emp_job_fk" FOREIGN KEY (job_id) REFERENCES jobs(job_id)

"emp_manager_fk" FOREIGN KEY (manager_id) REFERENCES employees(employee_-id)

Referenced by:

TABLE "departments" CONSTRAINT "dept_mgr_fk" FOREIGN KEY (manager_id) REFERENCES
< employees(employee_1id)

TABLE "employees" CONSTRAINT "emp_manager_fk" FOREIGN KEY (manager_id)

< REFERENCES employees(employee_-id)
TABLE "job_evaluations" CONSTRAINT "eval_employee_fk" FOREIGN KEY (employee_id)
< REFERENCES employees(employee_id)

TABLE "job_evaluations" CONSTRAINT "eval_evaluator_fk" FOREIGN KEY
< (evaluator_id) REFERENCES employees(employee_-id)
TABLE "job_history" CONSTRAINT "jhist_emp_fk" FOREIGN KEY (employee_id)

< REFERENCES employees(employee_id)

Découverte de PostgreSQL Migrator

47

6/ Exercice #4

- Décompter les lignes entre les deux bases
- Controler l'intégrité des données
- Déclencherun VACUUM FREEZE

49

DALIBO Workshops

6.1 VALIDATION DES DONNEES

La validation de I’état des lignes est une étape cruciale pour prendre la décision de basculer les ap-
plications sur la nouvelle base PostgreSQL sans risque de perte d’information. Si le moindre doute
subsiste sur la qualité ou la quantité de données, il faut envisager d’annuler les opérations de migra-
tion.

Pour le moment, PostgreSQL Migrator ne propose pas de rapport de validation d’une migration
de données.

Décompter les lignes de plusieurs tables.

Il nous appartient de réaliser le décompte du nombre de lignes entre la base source et la base cible
PostgreSQL. Les fonctions suivantes établissent une connexion a leur base respective et décomptent
les lignes des tables issues du fichier Source. json.

function count_source {
local SQLPLUS="sudo docker compose exec -T oracle sqlplus -S
o hr/phoenix@localhost/hr"
local filter=".Tables | sort_by(.Name | ascii_downcase) | .[] | @text
o \"\(.Schema) .\ (.Name)\""
local tables=$(jq -r "$filter" .pg_migrate/Source.json)
for table in $tables; do
cat <<- EOF | $SQLPLUS | grep -v 'AS!'
set newpage none head off feedback off
set markup csv on quote off
SELECT 'Stable', count(x) FROM Stable;
EOF
done

}

function count_target {
local PSQL="sudo docker compose exec -T postgres psql -d hr -U postgres"
local filter=".Tables | sort_by(.Name | ascii_downcase) | .[] | @text
o \"\(.Schema) .\ (.Name)\""
local tables=$(jq -r "$filter" .pg_migrate/Target.json)
for table in $tables; do
$PSQL --csv —-pset pager=off -tc "SELECT '$table', count(x) FROM S$table"
done

}

Exécuter le décompte avec la commande suivante.

$ paste -d ',' <(count_source) <(count_target) | column -s, -t
HR.COUNTRIES 35 public.countries 35
HR.DEPARTMENTS 27 public.departments 27

50 Découverte de PostgreSQL Migrator

DALIBO Workshops

HR.EMPLOYEES 907 public.employees 907
HR.JOB_EVALUATIONS 45000 public.job_evaluations 45000
HR.JOB_HISTORY 28010 public.job_history 28010
HR.JOBS 29 public.jobs 29
HR.LOCATIONS 1523 public.locations 1523
HR.REGIONS 5 public.regions 5

Valider 'intégrité d’un échantillon de données.

Le deuxiéme contréle vise a certifier que ladonnée n’a pas subi de transformation au cours de la copie.
Le changement d’encodage des chaines de caractéres ou la troncature non désirée d’une valeur sont
des erreurs que nous souhaitons éviter a tout prix.

Créer les deux fonctions select_* suivantes. Elles établissent une connexion a leur base respective,
exécutent la requéte passée en parametre et formatent le résultat au format CSV. Une attention parti-
culiere est nécessaire pour afficher correctement les données afin qu’elles aient un rendu équivalent
entre les deux systemes.

function select_source {
test -z "$1" && return
local SQLPLUS="sudo docker compose exec -T oracle sqlplus -S
o hr/phoenix@localhost/hr"
n=$'"\n'sy cat <<- EOF | $SQLPLUS | grep -v 'A$'
set newpage none head off feedback off
set markup csv on quote off
column salary format 999999.99
column commission_pct format 0.99
column score format 99.9
alter session set nls_date_format='YYYY-MM-DD';
alter session set nls_timestamp_format='YYYY-MM-DD HH24:MI:SS';
alter session set nls_timestamp_tz_format='YYYY-MM-DD HH24:MI:SSTZH';
$1;
EOF
}

function select_target {
test -z "$1" && return
local PSQL="sudo docker compose exec -T postgres psql -d hr -U postgres"
$PSQL --csv --pset pager=off -tc "$1"

}

A présent, nous pouvons lancer la commande suivante pour comparer les résultats d’une requéte qui
parcourt une fraction de la table employees. Sila commande n’affiche aucun résultat, les données
sont scrupuleusement identiques.

diff -u \

Découverte de PostgreSQL Migrator 51

DALIBO Workshops

<(select_source "SELECT x* FROM hr.employees WHERE MOD(employee_id, 10) = © ORDER BY
< employee_id") \
<(select_target "SELECT * FROM public.employees WHERE employee_id % 10 = @ ORDER BY

< employee_id")

La comparaison desdonnées CLOB est plus coliteuse en ressources. Pour latable job_evaluations,
nous allons uniqguement compter le nombre de caractéres dans la colonne comments a laide des
méthodes DBMS_LOB.GETLENGTH et char_length.

diff -u \
<(select_source "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS';
SELECT evaluation_id, employee_id, evaluator_-id,
evaluation_date, score, DBMS_LOB.GETLENGTH(comments)
FROM hr.job_evaluations
WHERE MOD(evaluation_id, 500) = 0
ORDER BY evaluation_id") \
<(select_target "SELECT evaluation_id, employee_id, evaluator_id,
evaluation_date, score, char_length(comments)
FROM public.job_evaluations
WHERE evaluation_id % 500 = 0
ORDER BY evaluation_id")

52 Découverte de PostgreSQL Migrator

DALIBO Workshops

6.2 TACHES DE MAINTENANCE

La bascule du modeéle et des données vers PostgreSQL s’accompagne d’une série d’opérations de
maintenance qui dépend de votre organisation. L’activation de les sondes de supervision et la planifi-
cation des sauvegardes sont sans conteste les premieres actions a entreprendre pour assurer le suivi
et la sécurité de la plateforme.

Réaliser un VACUUM FREEZE pour sécuriser les données a terme.

Une opération préventive, appelée gel des lignes, est fortement recommandée a lissue d’un charge-
ment massif de lignes dans une base PostgreSQL.

Rappelons qu’un numéro de transaction est attaché a chaque nouvelle ligne dans une base, afin de
garantir 'isolation des sessions entre elles. Or ces numéros de transaction sont encodés sur 32 bits
et sont recyclés a terme. Il'y a donc un risque de mélanger les opérations passées et celles a venir
au moment du rebouclage (wraparound). Afin d’éviter ce phénomene, l'opération VACUUM FREEZE
« gele » les vieux enregistrements, afin que ceux-ci ne se retrouvent pas brusquement dans le futur.

Exécuter la commande suivante pour déclencher un gel préventif des table de la base hr. Il est possi-
ble de traiter plusieurs tables simultanément avec 'option --jobs.

$ sudo docker compose exec -ti postgres vacuumdb -U postgres --freeze --jobs=4 hr
vacuumdb: vacuuming database "hr"

Découverte de PostgreSQL Migrator 53

Notes

55

Notes

57

Notes

59

Nos autres publications

61

DALIBO Workshops

FORMATIONS

DBA1 : Administration PostgreSQL
https://dali.bo/dbal

DBA2 : Administration PostgreSQL avancé
https://dali.bo/dba2

DBA3: Sauvegarde et réplication avec PostgreSQL
https://dali.bo/dba3

DEVPG : Développer avec PostgreSQL
https://dali.bo/devpg

PERF1: PostgreSQL Performances
https://dali.bo/perfl

PERF2 : Indexation et SQL avancés
https://dali.bo/perf2

MIGORPG : Migrer d’Oracle a PostgreSQL
https://dali.bo/migorpg

HAPAT : Haute disponibilité avec PostgreSQL
https://dali.bo/hapat

62

Découverte de PostgreSQL Migrator

https://dali.bo/dba1
https://dali.bo/dba2
https://dali.bo/dba3
https://dali.bo/devpg
https://dali.bo/perf1
https://dali.bo/perf2
https://dali.bo/migorpg
https://dali.bo/hapat

DALIBO Workshops

LIVRES BLANCS

- Migrer d’Oracle a PostgreSQL
https://dali.bo/dlb01

- Industrialiser PostgreSQL
https://dali.bo/dlb02

- Bonnes pratiques de modélisation avec PostgreSQL
https://dali.bo/dlb04

- Bonnes pratiques de développement avec PostgreSQL
https://dali.bo/dlb05

Découverte de PostgreSQL Migrator

63

https://dali.bo/dlb01
https://dali.bo/dlb02
https://dali.bo/dlb04
https://dali.bo/dlb05

DALIBO Workshops

TELECHARGEMENT GRATUIT

Les versions électroniques de nos publications sont disponibles gratuitement sous licence open
source ou sous licence Creative Commons.

64 Découverte de PostgreSQL Migrator

7/ DALIBO, LExpertise PostgreSQL

Depuis 2005, DALIBO met a la disposition de ses clients son savoir-faire dans le domaine des bases
de données et propose des services de conseil, de formation et de support aux entreprises et aux
institutionnels.

En parallele de son activité commerciale, DALIBO contribue aux développements de la communauté
PostgreSQL et participe activement a I'animation de la communauté francophone de PostgreSQL. La
société est également a 'origine de nombreux outils libres de supervision, de migration, de sauveg-
arde et d’optimisation.

Le succes de PostgreSQL démontre que la transparence, l'ouverture et 'auto-gestion sont a la fois une
source d’innovation et un gage de pérennité. DALIBO a intégré ces principes dans son ADN en optant
pour le statut de SCOP : la société est controlée a 100 % par ses salariés, les décisions sont prises
collectivement et les bénéfices sont partagés a parts égales.

65

	Introduction
	Tour de table
	Déroulé de l’atelier
	Prérequis de l’atelier

	Présentation
	Ambitions (1/3)
	Ambitions (2/3)
	Ambitions (3/3)
	Fonctionnalités (1/4)
	Fonctionnalités (2/4)
	Fonctionnalités (3/4)
	Fonctionnalités (4/4)

	Exercice #1
	Installation de PostgreSQL Migrator
	Inspecter le catalogue
	Création du rapport d’évaluation

	Exercice #2
	Conversions génériques
	Naviguer dans l’interface graphique
	Procéder à des modifications du modèle
	Générer le modèle de données converti au format SQL

	Exercice #3
	Configuration de la base cible
	Création des tables
	Copie des données
	Création des index et des contraintes

	Exercice #4
	Validation des données
	Tâches de maintenance

	Notes
	Notes
	Notes
	Nos autres publications
	Formations
	Livres blancs
	Téléchargement gratuit

	DALIBO, L’Expertise PostgreSQL

