
Atelier Migration PostgreSQL Migrator

Découverte de PostgreSQL Migrator

DALIBO
L'expertise PostgreSQL

Contents

1/ Introduction 3
1.1 Tour de table . 4
1.2 Déroulé de l’atelier . 5
1.3 Prérequis de l’atelier . 6

2/ Présentation 7
2.1 Ambitions (1/3) . 8
2.2 Ambitions (2/3) . 9
2.3 Ambitions (3/3) . 10
2.4 Fonctionnalités (1/4) . 11
2.5 Fonctionnalités (2/4) . 12
2.6 Fonctionnalités (3/4) . 13
2.7 Fonctionnalités (4/4) . 15

3/ Exercice #1 17
3.1 Installation de PostgreSQL Migrator . 18
3.2 Inspecter le catalogue . 19
3.3 Création du rapport d’évaluation . 23

4/ Exercice #2 27
4.1 Conversions génériques . 28
4.2 Naviguer dans l’interface graphique . 29
4.3 Procéder à des modifications dumodèle . 32
4.4 Générer le modèle de données converti au format SQL 34

5/ Exercice #3 39
5.1 Configuration de la base cible . 40
5.2 Création des tables . 41
5.3 Copie des données . 43
5.4 Création des index et des contraintes . 45

6/ Exercice #4 49
6.1 Validation des données . 50
6.2 Tâches de maintenance . 53

Notes 55

iii

DALIBOWorkshops

Notes 57

Notes 59

Nos autres publications 61
Formations . 62
Livres blancs . 63
Téléchargement gratuit . 64

7/ DALIBO, L’Expertise PostgreSQL 65

iv Découverte de PostgreSQLMigrator

DALIBOWorkshops

Découverte de PostgreSQLMigrator 1

1/ Introduction

3

DALIBOWorkshops

1.1 TOUR DE TABLE

– « Avez‑vous un ou des projets de migration vers PostgreSQL ? »
– « Depuis quel système ? Oracle, MySQL, SQL Server ? »
– « Quels outils ou techniques avez‑vous employés ? »
– « Quelles ont été les principales difficultés ? »

4 Découverte de PostgreSQLMigrator

DALIBOWorkshops

1.2 DÉROULÉ DE L’ATELIER

– 3 heures
– Présentation de PostgreSQL Migrator
– Travaux pratiques sur la baseHR

– Manipulation de l’outil
– Analyse de la complexité
– Migration des tables et des données

Découverte de PostgreSQLMigrator 5

DALIBOWorkshops

1.3 PRÉREQUIS DE L’ATELIER

– Un terminal
– Une VM Rocky Linux 9 ou équivalent
– Compétences Linux et SQL
– Une instance Oracle (image gvenzl/oracle-free:23-slim)
– Une instance PostgreSQL 18

Environnement

L’ensemble des travaux pratiques nécessite une base de données Oracle dans un conteneur. Le mod‑
èle de données est le traditionnel schéma HR avec des adaptations.

Installer docker-ce et docker-compose-plugin et démarrer le service.

https://docs.docker.com/engine/install/rhel/#installation‑methods

$ sudo dnf -y update
$ sudo dnf -y install dnf-plugins-core
$ sudo dnf config-manager --add-repo

https://download.docker.com/linux/rhel/docker-ce.repo↪

$ sudo dnf -y install -y docker-ce docker-ce-cli containerd.io docker-compose-plugin
$ sudo systemctl enable --now docker

Démarrer les conteneurs Oracle et PostgreSQL

Un fichier docker-compose.yml est disponible en téléchargement.

$ curl -s -kL https://dali.bo/tp_migpg -o - | tar xvz
$ sudo docker compose up -d oracle postgres

6 Découverte de PostgreSQLMigrator

2/ Présentation

7

DALIBOWorkshops

2.1 AMBITIONS (1/3)

Moderniser la migration avec des logiciels libres.

– Un outil universel

– Couplé à transqlate pour la conversion du code
– Sous licence PostgreSQL
– Hébergé sur Gitlab.com

– Langages Go (backend) et Vue.js (frontend)

8 Découverte de PostgreSQLMigrator

DALIBOWorkshops

2.2 AMBITIONS (2/3)

Proposer une gouvernance solide

– Le projet rejoint le Dalibo Labs
– Travail conjoint entre les DBA et les DEV

– Itérations de deux semaines
– Intégration et livraison continues (CI/CD)

Découverte de PostgreSQLMigrator 9

DALIBOWorkshops

2.3 AMBITIONS (3/3)

Favoriser drastiquement la prise enmain

– Simplification de l’installation
– Navigation graphique dans le modèle de données à convertir
– Identification des points chaud du chantier
– Peu de configurations superflues
– Orchestration des tâches de copie automatique et optimisée
– Documentation

10 Découverte de PostgreSQLMigrator

DALIBOWorkshops

2.4 FONCTIONNALITÉS (1/4)

Un binaire unique en Go

– Aucune dépendance à installer sur le système
– Pilotes communautaires : Oracle, MySQL
– Ligne de commande simple et moderne
– Serveur Web embarqué (Vue.js)

Découverte de PostgreSQLMigrator 11

DALIBOWorkshops

2.5 FONCTIONNALITÉS (2/4)

Mode hors‑ligne

– Inspection de la base source vers des fichiers JSON
– Exploitation des données sans besoin de connexion

– Analyse des points chauds
– Conversion dumodèle pour PostgreSQL au format SQL
– Versionnement pour le travail collaboratif

12 Découverte de PostgreSQLMigrator

DALIBOWorkshops

2.6 FONCTIONNALITÉS (3/4)

Transfert des données performant

– Langage compilé
– Techniques de transfert optimisé

– COPY en flux continu
– Maîtrise de la consommationmémoire
– Réutilisation des connexions ouvertes

– Support des BLOB/CLOB

5K

112K

344

1270

245

1350

1,6
3,1

8 colonnes 80 colonnes LOB < 96k LOB > 1M

VITESSE DE COPIE
En tuple/seconde

ora2pg

PostgreSQL Migrator

Découverte de PostgreSQLMigrator 13

DALIBOWorkshops

94M

185M

571M

1,4G

41M

8 colonnes 80 colonnes LOB < 96k LOB > 1M

CONSOMMATION MÉMOIRE
En octets

42M
101M 110M

ora2pg

PostgreSQL Migrator

14 Découverte de PostgreSQLMigrator

DALIBOWorkshops

2.7 FONCTIONNALITÉS (4/4)

Interface graphique (Web)

– Navigation dans les modèles source et cible
– Définition des objets relationnels et procéduraux
– Recherche globale
– À terme

– Assistant à la conversion
– Progression du transfert des données
– Édition / correction du code PL/pgSQL

Découverte de PostgreSQLMigrator 15

3/ Exercice #1

– Installation de PostgreSQL Migrator
– Inspection de la base source
– Générer un rapport d’évaluation

17

DALIBOWorkshops

3.1 INSTALLATION DE POSTGRESQLMIGRATOR

Télécharger et installer la dernière version de l’outil

Se rendre sur la page du projet et télécharger le dernier paquet disponible pour Redhat. Les formats
.deb et .rpm sont à privilégier.

– https://gitlab.com/dalibo/pg_migrate/‑/releases/permalink/latest

$ v=1.0.0-beta.7
$ d=https://gitlab.com/dalibo/pg_migrate/-/releases/v${v}/downloads
$ sudo dnf -y install ${d}/pg-migrate_${v}_linux_amd64.rpm

18 Découverte de PostgreSQLMigrator

https://gitlab.com/dalibo/pg_migrate/-/releases/permalink/latest

DALIBOWorkshops

3.2 INSPECTER LE CATALOGUE

Découvrir les sous‑commandes de l’outil.

PostgreSQL Migrator dispose d’une interface en ligne de commande (CLI) nommée pg_migrate.
Chaque étape du chantier de migration est rattachée à une des sous‑commandes de la CLI.

$ pg_migrate --help
Usage: pg_migrate [OPTIONS] COMMAND

Commands:
convert Convert source catalog for PostgreSQL
dump Dumps a source database as text files or to stdin
init Initialize a new migration project
inspect Fetch and analyse source database catalog
report Generate a migration report
status Describe a migration project
ui Interactive audit web interface

Devant chaque sous‑commande, il est possiblede changer le comportementde laCLI avec les options
générales comme --verbose ou --plain.

General Options:
-C, --directory string Change to directory before doing anything
-?, --help Print help and exit

--offline Prevent source database access
--plain Disable log coloration
--skip-date-warning Suppress the warning about outdated build

-v, --verbose Show debug log messages
-V, --version Print version and exit

Enfin, certaines variables d’environnement sont documentées et peuvent être valorisées depuis le
contexte d’exécution.

Environment variables:

PGMDIRECTORY Change to directory before doing anything.
PGMOFFLINE Set to true prevent source database access.

Initialiser le répertoire de travail.

Pour chaque projet de migration, il est nécessaire d’initialiser un répertoire de travail à partir de la
chaîne de connexion et d’un compte de connexion.

$ pg_migrate init --source oracle://hr:phoenix@localhost/hr atelier
09:54:08 INFO Opening database connection pool. key=source driver=oracle

dsn=or:hr@localhost/hr↪

Découverte de PostgreSQLMigrator 19

DALIBOWorkshops

09:54:08 INFO Connecting to database. key=source count=1
09:54:08 INFO Initialized migration project. source="Oracle Database 23ai Free"

version=23.0.0.0.0 path=atelier↪

09:54:08 INFO Databases connections closed. source=1 target=0

Découvrir les fichiers du projet.

La commande init crée une série de fichiers dans le dossier de travail. Le dossier caché
.pg_migrate est garant de l’état du projet et ne doit pas être modifié à la main.

Le fichier.env contient les variablesd’environnementduprojet, tel quePGMSOURCEqui correspond
au paramètre--target de la commande précédente. Enfin, le fichierpg_migrate.toml permet
de configurer le comportement de PostgreSQL Migrator durant toutes les étapes du projet.

atelier
├── Annotations.jq
├── .env
├── .gitignore
├── .pg_migrate
│ └── Info.json
├── pg_migrate.toml
├── report.md.tmpl
├── Summary.jq
└── Total.jq

Les fichiers .jq et .md.tmpl sont respectivement les filtres pour manipuler les données JSON du
projet, et les templates pour la présentation de ces données.

Exécuter la commande d’inspection.

Avant toutechose, il faut sepositionnerdans le répertoirede travail, làoù lacommandepg_migrate
consulte les fichiers du dossier .pg_migrate et le contenu du fichier .env.

Lancer la sous‑commande inspect. Si besoin, l’option --verbose peut s’intercaler entre la com‑
mande pg_migrate et la sous‑commande.

$ cd atelier/
$ pg_migrate inspect
09:55:38 INFO Opening database connection pool. key=source driver=oracle

dsn=or:hr@localhost/hr↪

09:55:38 INFO Connecting to database. key=source count=1
09:55:38 INFO Inspecting source database. driver=oracle
09:55:38 INFO Inspected metadata. instance=FREE software="Oracle

Database 23ai Free" version=23.9.0.25.07↪

09:55:38 WARN Failed to query database size. err="ORA-00942: table or view
\"SYS\".\"DBA_SEGMENTS\" does not exist\n error occur at position: 44"↪

20 Découverte de PostgreSQLMigrator

DALIBOWorkshops

09:55:38 INFO Found sequences. count=4
09:55:39 INFO Found procedures. count=2
09:55:39 INFO Found functions. count=2
09:55:39 INFO Found packages. count=2
09:55:39 INFO Found views. count=1
09:55:41 INFO Found tables. count=8
09:55:41 INFO Connecting to database. key=source count=5
09:55:41 INFO Found table triggers. count=6
09:55:47 INFO Found tables keys. count=9
09:55:49 INFO Found foreign keys. count=12
09:55:52 INFO Found tables checks. count=2
09:55:56 INFO Found tables indexes. count=2
09:55:56 INFO Inspected schema. name=HR

Plusieurs avertissements s’affichent à l’écran pour nous informer que l’inspection a rencontré une ou
plusieurs erreurs à la lecture du catalogue distant. L’inspection est dite partielle, ce qui signifie que
des informations sont manquantes pour établir une évaluation complète.

Dans le cas présent, le compte de connexion “HR” n’a pas les autorisations pour consulter les vues du
catalogue Oracle.

09:55:56 WARN Partial inspection. See errors below.
09:55:56 WARN You can use the catalog but some objects may be missing or incomplete.
09:55:56 WARN Ensure you have the necessary privileges.
09:55:56 WARN Soure database version may not be supported.

L’inspection se poursuit avec une phase d’audit du catalogue extrait de la base distante. Cette étape
permet d’identifier des faiblesses dumodèle de données, ainsi que les complications éventuelles lors
de la conversion. Durant cette étape, chaque composant (table, vue, index, procédure stockée) se voit
attribué un score de complexité ainsi qu’une série d’annotations si nécessaire.

Une première conversion du modèle est réalisée dans la foulée. Cette opération va consulter le
catalogue local de la base source, contenu dans le fichier .pg_migrate/Source.json pour
en produire le fichier .pg_migrate/Target.json. Il contient la même structure que le fichier
Source.jsonmais avec certaines conversions génériques.

09:55:56 INFO Auditing catalog. driver=oracle
09:55:56 INFO Catalog audited.
09:55:56 INFO Converted catalog for PostgreSQL.
09:55:56 INFO Auditing catalog. driver=oracle
09:55:56 WARN Target catalog has pending annotations. count=16
09:55:56 INFO Databases connections closed. source=5 target=0

Recommencer l’inspection avec un compte privilégié.

Relancer la commande init depuis le répertoire pour modifier le compte de connexion. Un compte

Découverte de PostgreSQLMigrator 21

DALIBOWorkshops

privilégié comme system ne rencontrera pas les erreurs d’inspection. Il est aussi possible d’octroyer
les bons privilèges au compte hr en respectant les prérequis indiqués dans la documentation1.

$ pg_migrate init --source oracle://system:manager@localhost/hr

Relancer l’inspection. Lecatalogueainsi extrait est stockédans le fichier.pg_migrate/Source.json.

$ pg_migrate inspect

1https://postgresql‑migrator.readthedocs.io/en/latest/references/requirements/

22 Découverte de PostgreSQLMigrator

https://postgresql-migrator.readthedocs.io/en/latest/references/requirements/

DALIBOWorkshops

3.3 CRÉATION DU RAPPORT D’ÉVALUATION

Exécuter la sous‑commande report depuis votre répertoire de travail.

$ pg_migrate report
16:25:41 INFO Generating JSON report. report=Annotations.json

filter=Annotations.jq↪

16:25:41 INFO Generating JSON report. report=Summary.json filter=Summary.jq
16:25:41 INFO Generating JSON report. report=Total.json filter=Total.jq
16:25:41 INFO Generating Markdown report. report=report.md

template=report.md.tmpl↪

Consulter librement le contenu du rapport nommé report.md. Un tableau récapitulatif reprend
le décompte des composants du catalogue, leur taille si applicable, leur score et le nombre
d’annotations pour chaque catégorie.

Object Count Size Score Annotations

Roles 2 2.0 0

Schemas 1 0.1 0

Sequences 4 0.4 0

Tables 8 1.2GB 25.8 7

Triggers 6 12.7 4

Views 1 8.1 1

Indexes 13 4.1MB 2.7 0

Procedures 2 4.7 0

Functions 2 4.9 0

Packages 2 59.8 5

Plus bas, une liste des annotations est fournie pour mettre en lumière les principales causes de la
complexité de la base de donnée.

– 2 Column withmissing precision.
– 1 View with read only view.
– 1 Package with transqlate: NULL comparison on identifier.
– 2 Procedure with transqlate: NULL comparison on identifier.
– 4 Trigger with transqlate: NULL comparison on identifier.
– 1 Column with type CLOB.

Découverte de PostgreSQLMigrator 23

DALIBOWorkshops

– 2 Package with unparsed statements.

Enrichir le rapport en ajoutant un décompte des colonnes par type de données.

Il est possible de composer un rapport enmanipulant deux catégories de fichiers. La nature flexible et
programmable de ce mécanisme de composition vous permet d’enrichir le rapport avec les données
de votre choix.

– Les filtres .jq permettent de réduire et de manipuler des données brutes au format JSON, ici
Source.json ;

– Les templates .md.tmpl incorporent les données filtrées dans un fichier final au format Mark‑
down.

Nous souhaitons décompter les nombres de colonnes en fonction de leur type de données. Pour y
parvenir, créer un fichier Types.jq dans le projet avec le contenu suivant :

[$Source[].Tables[]?.Columns[].Type.Name]
| group_by(.)
| map({Name: .[0], Count: length})
| sort_by(.Count)
| reverse

Ce filtre liste les types des toutes les colonnes de table du fichier Source.json et les regroupe par
nom en créant un tableau associatif trié. Ce tableau peut ensuite être manipulé dans un template à
l’aide d’une boucle range. Consulter la documentation text/template2 du langage Go pour plus de
précision.

Modifier le fichier report.md.tmpl en ajoutant le bout de code suivant :

Types de colonnes
{{ range $type := .Types }}
- {{ $type.Count }} {{ $type.Name }}
{{- end }}

Exécuter à nouveau la sous‑commande report.

Le moteur de rapport détecte que le template a été modifié et s’appuie sur la donnée du fichier
Types.json, lui‑même déclaré par le filtre Types.jq. Le fichier intermédiaire est créé et le
rapport report.md est mis à jour avec la nouvelle section « Types de colonnes ».

$ pg_migrate report
15:18:17 INFO Generating JSON report. report=Types.json filter=Types.jq
15:18:17 INFO Generating Markdown report. report=report.md

template=report.md.tmpl↪

2https://pkg.go.dev/text/template

24 Découverte de PostgreSQLMigrator

https://pkg.go.dev/text/template

DALIBOWorkshops

La base HR contient 21 colonnes, dont la répartition par type est listée ci‑dessous.

– 19 NUMBER
– 15 VARCHAR2
– 4 DATE
– 2 CHAR
– 1 CLOB

Découverte de PostgreSQLMigrator 25

4/ Exercice #2

– Écrire des règles de conversion
– Naviguer dans l’interface graphique
– Exporter le modèle dans des fichiers plats

27

DALIBOWorkshops

4.1 CONVERSIONS GÉNÉRIQUES

Exécuter la commande pg_migrate convert --refresh enmode verbeux.

Se positionner dans le dossier du projet et relancer une opération de conversion. La page de docu‑
mentation1 décrit les conversions génériques réalisées durant cette étape.

$ pg_migrate --verbose convert --refresh
...
... from=CHAR(2) to=char(2) path=Tables/HR.COUNTRIES/Columns/COUNTRY_ID
... from=VARCHAR2(60) to=varchar(60) path=Tables/HR.COUNTRIES/Columns/COUNTRY_NAME
... from=NUMBER to=numeric path=Tables/HR.COUNTRIES/Columns/REGION_ID
... from="NUMBER(4, 0)" to=smallint path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID
... from=VARCHAR2(30) to=varchar(30)

path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_NAME↪

... from="NUMBER(6, 0)" to=integer path=Tables/HR.DEPARTMENTS/Columns/MANAGER_ID

Le mode verbeux vous donne plus de détails sur les modifications opérées. Par exemple, les types
NUMBER(6, 0) d’Oracle sont convertis en integer. L’option --verbose est globale et se posi‑
tionne avant la sous‑commande. La deuxième option --refresh est propre à la sous‑commande
et se positionne après cette dernière. Elle force la réécriture intégrale du fichier Source.json.

Une explorationpluspérilleusedes fichiers JSONest tout à fait possible. L’exemple ci‑dessouspermet
de cibler les différences entre les deux fichiers pour la colonne employees.employee_id.

$ expr='.Tables[].Columns[] | select(.objectPath |
match("Tables/hr.employees/Columns/employee_id";"i")) | .Type'↪

$ diff <(jq -r "$expr" .pg_migrate/Source.json) <(jq -r "$expr"
.pg_migrate/Target.json)↪

2,6c2
< "Name": "NUMBER",
< "Params": [
< "6",
< "0"
<]

> "Name": "integer"

1https://postgresql‑migrator.readthedocs.io/en/latest/references/conversion/

28 Découverte de PostgreSQLMigrator

https://postgresql-migrator.readthedocs.io/en/latest/references/conversion/

DALIBOWorkshops

4.2 NAVIGUER DANS L’INTERFACE GRAPHIQUE

Exécuter la commande pg_migrate ui.

L’outil PostgreSQL Migrator embarque un serveur web interne pour présenter le contenu des fichiers
JSON sous une forme graphique et interactive. La page d’accueil vous fournit les éléments clés
de l’inspection, similaire au rapport Markdown généré précédemment. Sur la page d’accueil, on y
retrouve la version du moteur, le poids cumulé des tables et des index, la somme du nombre de
lignes issues des composants procéduraux, etc.

Consulter tous les composants de la base de données.

Naviguer à l’intérieur de la base Oracle pour obtenir la liste de ses objets. Il est possible de filtrer
depuis une barre de recherche pour accéder à un objet en particulier. Si vous tapez le mot « history »
dans la recherche globale, un résultat s’affiche pour lister les composants comportant ce mot dans
leur définition ou la définition de leur parent.

Trier par score.

Le score d’un composant est calculé selon plusieurs critères, tels que son type, le nombre de colonne
ou des lignes de codes qui le constituent. Un tableau récapitulatif de tous les scores est accessible sur
une page de la documentation2. La somme de tous les scores permet de déterminer la complexité de
2https://postgresql‑migrator.readthedocs.io/en/latest/references/toml/#scores‑section

Découverte de PostgreSQLMigrator 29

https://postgresql-migrator.readthedocs.io/en/latest/references/toml/#scores-section

DALIBOWorkshops

lamigration d’une base de données dans son ensemble. Les composants dont les scores sont les plus
élevés, sont a priori les plus complexes à porter vers PostgreSQL.

Consulter la définition de la table EMPLOYEES.

Cliquer sur la table HR.EMPLOYEES de la liste et sélectionner le tri par défaut. Les composants
représentent tout objet rattaché dans la table, comme les colonnes, les index ou les triggers. L’onglet
« JSON » fournit le détail du composant, tel que présenté dans le fichier d’inventaire.

30 Découverte de PostgreSQLMigrator

DALIBOWorkshops

Consulter la version convertie de la table EMPLOYEES.

Dans la colonne de droite, un lien permet d’aller vers la définition de l’objet converti. On y retrouve
les conversions de colonnes NUMBER(6, 0) en integer.

Découverte de PostgreSQLMigrator 31

DALIBOWorkshops

4.3 PROCÉDER À DESMODIFICATIONS DUMODÈLE

Renommer le schéma HR en public.

Il estpossiblededéfinirdesconversionspersonnaliséesavec le fichierdeconfigurationpg_migrate.toml.
Chaque composant du modèle source dispose d’un chemin unique (le path) pour le distinguer et
lui appliquer des transformations. Éditer le fichier avec un éditeur de texte et copier les lignes
suivantes :

[[Convert.Rules]]
Path = "Schemas/HR"
Name = "public"

Déclarer toutes les colonnes faisant référence à DEPARTMENTS.DEPARTMENT_ID en inte-
ger.

Nous voulons définir des règles de transformation sur les colonnes de certaines tables. Éditer à nou‑
veau le fichier pg_migrate.toml.

[[Convert.Rules]]
Path = "Tables/HR.EMPLOYEES/Columns/DEPARTMENT_ID"
Type = "integer"

[[Convert.Rules]]
Path = "Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID"
Type = "integer"

[[Convert.Rules]]
Path = "Tables/HR.JOB_HISTORY/Columns/DEPARTMENT_ID"
Type = "integer"

Déclarer toutes les colonnesde typeDATEendate, saufpour la colonneJOB_EVALUATIONS.EVALUATION_DATE
qui devra être convertie en timestamp without time zone.

La règleConvert.DataTypes surcharge les conversions génériques et sera appliquée pour toutes
les colonnes dont le type est déclaré à la gauche du symbole « = ». La casse est ignorée.

[Convert.DataTypes]
"DATE" = "date"

[[Convert.Rules]]
Path = "Tables/HR.JOB_EVALUATIONS/Columns/EVALUATION_DATE"
Type = "timestamp without time zone"

32 Découverte de PostgreSQLMigrator

DALIBOWorkshops

N’oubliez pas de relancer une conversion du modèle afin que la configuration puisse être prise en
compte. Pour aller plus loin, une page de documentation3 reprend les syntaxes et les règles de trans‑
formation possibles.

$ pg_migrate --verbose convert --refresh
...
... Overriding datatype rule. match=date
... Converting object identifier. from=HR to=public path=Schemas/HR
... Converting column type. from="NUMBER(4, 0)" to=bigint

path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID↪

... Converting column type. from="NUMBER(4, 0)" to=bigint
path=Tables/HR.EMPLOYEES/Columns/DEPARTMENT_ID↪

... Converting column type. from="NUMBER(4, 0)" to=bigint
path=Tables/HR.JOB_HISTORY/Columns/DEPARTMENT_ID↪

... Converting column type. from=DATE to="timestamp without time zone"
path=Tables/HR.JOB_EVALUATIONS/Columns/EVALUATION_DATE↪

... Converting column type. from=DATE to=date
path=Tables/HR.EMPLOYEES/Columns/HIRE_DATE↪

... Converting column type. from=DATE to=date
path=Tables/HR.JOB_HISTORY/Columns/START_DATE↪

... Converting column type. from=DATE to=date
path=Tables/HR.JOB_HISTORY/Columns/END_DATE↪

3https://postgresql‑migrator.readthedocs.io/en/latest/references/toml/#convertrules

Découverte de PostgreSQLMigrator 33

https://postgresql-migrator.readthedocs.io/en/latest/references/toml/#convertrules

DALIBOWorkshops

4.4 GÉNÉRER LE MODÈLE DE DONNÉES CONVERTI AU FORMAT SQL

Consulter les annotations dumodèle converti.

Revenez sur la page d’accueil pour naviguer dans le catalogue PostgreSQL. L’onglet « Annotations »
vous révèle les actions requises avant l’export, ainsi que les fonctionnalités non implémentées de
PostgreSQL Migrator.

L’outil est réglé pour ne pas exporter le schéma et ses données s’il existe des annotations non prises
en compte. Unmessage d’erreur survient lors de l’export avec la commande pg_migrate dump.

$ pg_migrate dump
15:59:13 ERROR Target model has pending annotations. len=16
15:59:13 ERROR Use --force to dump anyway.

Pour ignorer cecomportement, nousallonsajouterune instructiondans le fichierpg_migrate.toml.

[Dump]
Force = true

Exécuter la commande pg_migrate dump --target files --schema-only.

La sous‑commande dump est responsable de l’export des objets et de leurs données dans un format
SQL compatible avecPostgreSQL. L’option--targetpermetdedéfinir l’endroit où seront écrites les

34 Découverte de PostgreSQLMigrator

DALIBOWorkshops

instructions. Pour le moment, nous souhaitons un aperçu des structures converties dans des fichiers
plats.

$ pg_migrate dump --target files --schema-only
17:22:58 INFO Writing queries to dump/ directory.
17:22:58 INFO Create role. name=pdbadmin path=00002-Roles-pdbadmin-create.sql
17:22:58 INFO Create role. name=hr path=00001-Roles-hr-create.sql
17:22:58 INFO Create schema. name=public path=00003-Schemas-public-create.sql
17:22:58 INFO Create table. name=public.employees

path=00006-Tables-public.employees-create.sql↪

17:22:58 INFO Create table. name=public.jobs
path=00007-Tables-public.jobs-create.sql↪

17:22:58 INFO Create table. name=public.departments
path=00005-Tables-public.departments-create.sql↪

17:22:58 INFO Create table. name=public.locations
path=00009-Tables-public.locations-create.sql↪

17:22:58 INFO Create table. name=public.countries
path=00004-Tables-public.countries-create.sql↪

17:22:58 INFO Create table. name=public.job_history
path=00008-Tables-public.job_history-create.sql↪

17:22:58 INFO Create sequence. name=public.locations_seq.
path=00014-Sequences-public.locations_seq-create.sql↪

17:22:58 INFO Create sequence. name=public.evaluations_seq.
path=00013-Sequences-public.evaluations_seq-create.sql↪

17:22:58 INFO Create table. name=public.regions
path=00010-Tables-public.regions-create.sql↪

17:22:58 INFO Create sequence. name=public.employees_seq.
path=00012-Sequences-public.employees_seq-create.sql↪

17:22:58 INFO Create sequence. name=public.departments_seq.
path=00011-Sequences-public.departments_seq-create.sql↪

...

L’option--schema-only est similaire à celle de l’outilpg_dump. Il s’agit d’un raccourci pour les op‑
tions--section=pre-dataet--section=post-data. N’hésitezpas à consulter l’aidedepuis
la ligne de commande pour plus de détails.

$ pg_migrate dump --help
Usage: pg_migrate [OPTIONS] dump [OPTIONS]

Generates DDL and/or COPY for target PostgreSQL.
Executes statements in defined PostgreSQL target database
or writes to stdout or files.
Requires successful convert.

Options:
-c, --clean clean (drop) objects before recreating

or truncate table before copy

Découverte de PostgreSQLMigrator 35

DALIBOWorkshops

-a, --data-only dump only the data, not the schema
-f, --force ignore unhandled annotations
-?, --help Show help
-j, --jobs int use this many parallel jobs to dump (default 4)

--refresh-stats refresh table statistics before planning dump (default true)
-s, --schema-only dump only the schema, no data

--section string dump named section (pre-data, data, post-data)
--target string DSN for query execution

--target can be stdout, files or a PostgreSQL DSN.

If stdout is not a terminal, writes to stdout.
Else if PGMTARGET is defined, sends to PostgreSQL target database.
Force file output with --target=files.

See pg_migrate --help for more informations.

Consulter les fichiers présents dans le répertoire dump/.

Les fichiers SQL générés par la commande précédente sont accessibles depuis le dossier dump/ du
répertoire de travail.

$ tree dump/
dump/
├── 00001-Roles-hr-create.sql
├── 00002-Roles-pdbadmin-create.sql
├── 00003-Schemas-public-create.sql
├── 00004-Tables-public.countries-create.sql
├── 00005-Tables-public.departments-create.sql
├── 00006-Tables-public.employees-create.sql
├── 00007-Tables-public.job_evaluations-create.sql
├── 00008-Tables-public.job_history-create.sql
├── 00009-Tables-public.jobs-create.sql
├── 00010-Tables-public.locations-create.sql
├── 00011-Tables-public.regions-create.sql
...
├── 20029-Tables-public.job_evaluations-ForeignKeys-eval_employee_fk-create.sql
├── 20030-Tables-public.job_evaluations-ForeignKeys-eval_evaluator_fk-create.sql
├── 20031-Tables-public.job_history-ForeignKeys-jhist_dept_fk-create.sql
├── 20032-Tables-public.job_history-ForeignKeys-jhist_emp_fk-create.sql
├── 20033-Tables-public.job_history-ForeignKeys-jhist_job_fk-create.sql
└── 20034-Tables-public.locations-ForeignKeys-loc_c_id_fk-create.sql

La table employees est conforme à ce que nous attendions. Le schéma de destination est bien
public et les colonnes department_id et hire_date sont respectivement de type integer
et date.

36 Découverte de PostgreSQLMigrator

DALIBOWorkshops

--
-- Name: employees; Type: TABLE; Schema: public; Owner: unknown
--

CREATE TABLE "public"."employees" (
"employee_id" integer,
"first_name" varchar(20),
"last_name" varchar(25),
"email" varchar(25),
"phone_number" varchar(20),
"hire_date" date,
"job_id" varchar(10),
"salary" numeric(8, 2),
"commission_pct" numeric(2, 2),
"manager_id" integer,
"department_id" integer

);

Découverte de PostgreSQLMigrator 37

5/ Exercice #3

– Création des tables
– Copie des données
– Création des index et des contraintes

39

DALIBOWorkshops

5.1 CONFIGURATION DE LA BASE CIBLE

Démarrer l’instance PostgreSQL.

Si ce n’est pas déjà le cas, démarrer le conteneur PostgreSQL dans lequel nous réaliserons la copie
des données. L’authentificationtrust est active et permet de ne pas s’encombrer d’unmot de passe
(mais ne le faites pas chez vous !).

$ sudo docker compose up -d postgres

Créer une nouvelle base nommée hr.

La base hr doit être créée comme suit. Le compte postgres en est le propriétaire durant la phase de
migration et pourra être changé a posteriori.

$ sudo docker compose exec -ti postgres createdb -U postgres hr

Configurer le projet pour se connecter à l’instance.

Pour la suite des commandes, nous souhaitons renseigner l’adresse de connexion de cette nouvelle
instance pour que PostgreSQL Migrator y crée les composants à notre place. Lancer une initialisation
avec un nouvel argument --target depuis le répertoire de projet.

$ pg_migrate init \
--source=oracle://system:manager@localhost/hr \
--target=postgres://postgres@localhost/hr

Cela revient à ajouter contrôler l’accès et l’authentification à l’instance avant d’ajouter une ligne dans
le fichier .env. La variable d’environnement PGMTARGET est alors disponible pour déterminer la
destination des instructions SQL lors de l’exécution de la commande pg_migrate dump.

$ cat .env
PGMSOURCE=oracle://system:manager@localhost/hr
PGMTARGET=postgresql://postgres@localhost/hr

40 Découverte de PostgreSQLMigrator

DALIBOWorkshops

5.2 CRÉATION DES TABLES

La première étape de la migration consiste à créer les tables converties dans la base vierge. Nous
aurions pu utiliser les fichiers plats exportés précédemment avec l’option --target=files, nous
jugeons que PostgreSQLMigrator peut s’en charger aussi bien avec sonmoteur interne d’exécution et
d’orchestration.

Exécuter la commande pg_migrate dump --section=pre-data.

La phase dite « pre‑data » réunit les composants initiaux qui accueilleront la donnée (comme les sché‑
mas et leurs tables), ainsi que tout autre composant dont la structure peut être définie sans relation
avec de la donnée (comme les rôles, les séquences ou les vues).

$ pg_migrate dump --section=pre-data
17:11:14 WARN Ignoring unhandled annotations in target model. len=10
17:11:14 INFO Executing queries in target PostgreSQL.
17:11:14 INFO Create role. name=pdbadmin sn=00002
17:11:14 INFO Create schema. name=public sn=00003
17:11:14 INFO Create role. name=hr sn=00001
17:11:14 INFO Create table. name=public.jobs sn=00009
17:11:14 INFO Create table. name=public.job_evaluations sn=00007
17:11:14 INFO Create table. name=public.departments sn=00005
17:11:14 INFO Create table. name=public.regions sn=00011
17:11:14 INFO Create table. name=public.employees sn=00006
17:11:14 INFO Create table. name=public.locations sn=00010
17:11:14 INFO Create table. name=public.job_history sn=00008
17:11:14 INFO Create table. name=public.countries sn=00004
17:11:14 INFO Create sequence. name=public.locations_seq. sn=00015
17:11:14 INFO Create sequence. name=public.evaluations_seq. sn=00014
17:11:14 INFO Create sequence. name=public.employees_seq. sn=00013
17:11:14 INFO Create sequence. name=public.departments_seq. sn=00012

Contrôler la structure de la table public.employees.

Utiliser la commandedocker compose execpour interagir avec l’instanceduconteneur et l’invite
psql. La table employees est conforme aux conversions vues précédemment.

$ sudo docker compose exec -ti postgres psql -U postgres -d hr -c "\d
public.employees"↪

Table "public.employees"
Column | Type | Collation | Nullable | Default

----------------+-----------------------+-----------+----------+---------
employee_id | integer | | |
first_name | character varying(20) | | |
last_name | character varying(25) | | |

Découverte de PostgreSQLMigrator 41

DALIBOWorkshops

email | character varying(25) | | |
phone_number | character varying(20) | | |
hire_date | date | | |
job_id | character varying(10) | | |
salary | numeric(8,2) | | |
commission_pct | numeric(2,2) | | |
manager_id | integer | | |
department_id | integer | | |

42 Découverte de PostgreSQLMigrator

DALIBOWorkshops

5.3 COPIE DES DONNÉES

L’étape suivante va alimenter les tables PostgreSQL avec les données en provenance des tables Ora‑
cle. L’orchestrateur interne sélectionne les tables les plus volumineuses en priorité et crée autant de
processus que définis par l’argument --jobs (4 par défaut).

Exécuter la commande pg_migrate dump --data-only.

L’option --data-only est équivalente à --section=data. Si vous souhaitez recommencer la
copie intégrale des tables, l’option--clean ajoutera une instructiontruncate avant chaque table.
Toutefois, assurez‑vous de ne pas avoir créé de contraintes de clé étrangère.

Enfin, il est possible de désactiver la collecte des statistiques avec l’option --refresh-
stats=false s’il y a eu peu de changement entre deux exports. Les statistiques servent à
déterminer la priorité des tables entre elles.

$ pg_migrate dump --section=data
17:35:17 INFO Executing queries in target PostgreSQL.
17:35:17 INFO Collecting statistics, this may take a while...

À l’issue du traitement d’une table, une série demétriques permet d’appréhender le débit de transfert
pour cette migration et d’envisager des optimisations pour tenter d’accélérer la phase de copie des
données.

... table=public.regions elapsed=80ms data=54B rows=5 rate="62 rows/s" sn=10008

... table=public.departments elapsed=90ms data=643B rows=27 rate="300 rows/s"
sn=10002↪

... table=public.jobs elapsed=10ms data=1.1KB rows=29 rate="2.9K rows/s" sn=10006

... table=public.employees elapsed=50ms data=78KB rows=907 rate="18.1K rows/s"
sn=10003↪

... table=public.locations elapsed=60ms data=68.2KB rows=1523 rate="25.4K rows/s"
sn=10007↪

... table=public.countries elapsed=10ms data=577B rows=35 rate="3.5K rows/s" sn=10001

... table=public.job_history elapsed=390ms data=1.6MB rows=28010 rate="71.8K rows/s"
sn=10005↪

... table=public.job_evaluations elapsed=17.17s data=401.5MB rows=45000 rate="2.6K
rows/s" sn=10004↪

Un résumé de l’ensemble est fourni dès que la dernière table a été traitée. Il permet de contrôler que
le débit global est satisfaisant et de connaître la quantité de mémoire consommée au plus haut de
l’activité de transfert (memory peak).

17:35:40 INFO Copy completed. tables=8 data=403.1MB elapsed=17.62s
throughput=17.1MB/s jobs=4 mem=37.2MB↪

Découverte de PostgreSQLMigrator 43

DALIBOWorkshops

Une des tâches de copie consiste à rattraper les valeurs pour toutes les séquences du modèle con‑
verti.

17:35:23 INFO Restart sequences. schema=public sn=10009

44 Découverte de PostgreSQLMigrator

DALIBOWorkshops

5.4 CRÉATION DES INDEX ET DES CONTRAINTES

Exécuter la commande pg_migrate dump --section=post-data.

La création des index et l’activation des contraintes des tables arrivent en dernière étape, celle dite
« post‑data ». Durant cette étape, l’intégrité des données est mise à l’épreuve avec la validation des
références de clés étrangères ou de l’unicité des données de colonne.

L’orchestrateur interne de PostgreSQL Migrator se charge de construire les index et les clés primaires
en priorité et résout les dépendances croisées entre tables référencées pour limiter le risque de ver‑
rous (deadlocks).

$ pg_migrate dump --section=post-data
09:02:53 INFO Executing queries in target PostgreSQL.
09:02:53 INFO Create table key. name=public.jobs key=job_id_pk

sn=20007↪

09:02:53 INFO Create table key. name=public.regions key=reg_id_pk
sn=20009↪

09:02:53 INFO Create table key. name=public.job_evaluations
key=eval_id_pk sn=20005↪

09:02:53 INFO Create table key. name=public.departments
key=dept_id_pk sn=20002↪

09:02:53 INFO Create table key. name=public.employees
key=emp_email_uk sn=20003↪

09:02:53 INFO Create table key. name=public.locations key=loc_id_pk
sn=20008↪

09:02:53 INFO Create table key. name=public.job_history
key=jhist_emp_id_st_date_pk sn=20006↪

09:02:53 INFO Create table key. name=public.countries
key=country_c_id_pk sn=20001↪

09:02:53 INFO Create table key. name=public.employees
key=emp_emp_id_pk sn=20004↪

09:02:53 INFO Create Index. name=public.departments
idx=departments_location_id_idx sn=20010↪

09:02:53 INFO Create Index. name=public.locations
idx=locations_city_idx sn=20020↪

09:02:53 INFO Create Index. name=public.employees
idx=employees_department_id_idx sn=20011↪

09:02:53 INFO Create foreign key. name=public.countries
fk=countr_reg_fk sn=20023↪

09:02:53 INFO Create Index. name=public.employees
idx=employees_job_id_idx sn=20012↪

09:02:53 INFO Create Index. name=public.locations
idx=locations_country_id_idx sn=20021↪

09:02:53 INFO Create Index. name=public.employees
idx=employees_manager_id_idx sn=20013↪

Découverte de PostgreSQLMigrator 45

DALIBOWorkshops

09:02:53 INFO Create Index. name=public.locations
idx=locations_state_province_idx sn=20022↪

09:02:53 INFO Create Index. name=public.employees
idx=employees_last_name_first_name_idx sn=20014↪

09:02:53 INFO Create foreign key. name=public.departments
fk=dept_loc_fk sn=20024↪

09:02:53 INFO Create foreign key. name=public.locations fk=loc_c_id_fk
sn=20034↪

09:02:53 INFO Create Index. name=public.job_history
idx=job_history_department_id_idx sn=20017↪

09:02:53 INFO Create foreign key. name=public.departments
fk=dept_mgr_fk sn=20025↪

09:02:53 INFO Create Index. name=public.job_evaluations
idx=job_evaluations_employee_id_idx sn=20015↪

09:02:53 INFO Create foreign key. name=public.employees fk=emp_dept_fk
sn=20026↪

09:02:53 INFO Create foreign key. name=public.employees fk=emp_job_fk
sn=20027↪

09:02:53 INFO Create foreign key. name=public.employees
fk=emp_manager_fk sn=20028↪

09:02:53 INFO Create Index. name=public.job_history
idx=job_history_employee_id_idx sn=20018↪

09:02:53 INFO Create Index. name=public.job_history
idx=job_history_job_id_idx sn=20019↪

09:02:53 INFO Create Index. name=public.job_evaluations
idx=job_evaluations_evaluator_id_idx sn=20016↪

09:02:53 INFO Create foreign key. name=public.job_history
fk=jhist_dept_fk sn=20031↪

09:02:53 INFO Create foreign key. name=public.job_evaluations
fk=eval_employee_fk sn=20029↪

09:02:53 INFO Create foreign key. name=public.job_history
fk=jhist_emp_fk sn=20032↪

09:02:53 INFO Create foreign key. name=public.job_evaluations
fk=eval_evaluator_fk sn=20030↪

09:02:53 INFO Create foreign key. name=public.job_history
fk=jhist_job_fk sn=20033↪

Contrôler la structure de la table public.employees.

Les tables disposent bien de leur clé primaire et index. Les références de clé étrangères sont en place.
Aucune erreur n’a été observée durant la phase post‑data, les données sont cohérentes entre elles.

$ sudo docker compose exec -ti postgres psql -U postgres -d hr -c "\d
public.employees"↪

Table "public.employees"
Column | Type | Collation | Nullable | Default

----------------+-----------------------+-----------+----------+---------

46 Découverte de PostgreSQLMigrator

DALIBOWorkshops

employee_id | integer | | not null |
first_name | character varying(20) | | |
last_name | character varying(25) | | |
email | character varying(25) | | |
phone_number | character varying(20) | | |
hire_date | date | | |
job_id | character varying(10) | | |
salary | numeric(8,2) | | |
commission_pct | numeric(2,2) | | |
manager_id | integer | | |
department_id | integer | | |

Indexes:
"emp_emp_id_pk" PRIMARY KEY, btree (employee_id)
"emp_email_uk" UNIQUE CONSTRAINT, btree (email)
"employees_department_id_idx" btree (department_id)
"employees_job_id_idx" btree (job_id)
"employees_last_name_first_name_idx" btree (last_name, first_name)
"employees_manager_id_idx" btree (manager_id)

Foreign-key constraints:
"emp_dept_fk" FOREIGN KEY (department_id) REFERENCES departments(department_id)
"emp_job_fk" FOREIGN KEY (job_id) REFERENCES jobs(job_id)
"emp_manager_fk" FOREIGN KEY (manager_id) REFERENCES employees(employee_id)

Referenced by:
TABLE "departments" CONSTRAINT "dept_mgr_fk" FOREIGN KEY (manager_id) REFERENCES
employees(employee_id)↪

TABLE "employees" CONSTRAINT "emp_manager_fk" FOREIGN KEY (manager_id)
REFERENCES employees(employee_id)↪

TABLE "job_evaluations" CONSTRAINT "eval_employee_fk" FOREIGN KEY (employee_id)
REFERENCES employees(employee_id)↪

TABLE "job_evaluations" CONSTRAINT "eval_evaluator_fk" FOREIGN KEY
(evaluator_id) REFERENCES employees(employee_id)↪

TABLE "job_history" CONSTRAINT "jhist_emp_fk" FOREIGN KEY (employee_id)
REFERENCES employees(employee_id)↪

Découverte de PostgreSQLMigrator 47

6/ Exercice #4

– Décompter les lignes entre les deux bases
– Contrôler l’intégrité des données
– Déclencher un VACUUM FREEZE

49

DALIBOWorkshops

6.1 VALIDATION DES DONNÉES

La validation de l’état des lignes est une étape cruciale pour prendre la décision de basculer les ap‑
plications sur la nouvelle base PostgreSQL sans risque de perte d’information. Si le moindre doute
subsiste sur la qualité ou la quantité de données, il faut envisager d’annuler les opérations de migra‑
tion.

Pour lemoment, PostgreSQLMigrator ne propose pas de rapport de validation d’unemigration
de données.

Décompter les lignes de plusieurs tables.

Il nous appartient de réaliser le décompte du nombre de lignes entre la base source et la base cible
PostgreSQL. Les fonctions suivantes établissent une connexion à leur base respective et décomptent
les lignes des tables issues du fichier Source.json.

function count_source {
local SQLPLUS="sudo docker compose exec -T oracle sqlplus -S

hr/phoenix@localhost/hr"↪

local filter=".Tables | sort_by(.Name | ascii_downcase) | .[] | @text
\"\(.Schema).\(.Name)\""↪

local tables=$(jq -r "$filter" .pg_migrate/Source.json)
for table in $tables; do

cat <<- EOF | $SQLPLUS | grep -v '^$'
set newpage none head off feedback off
set markup csv on quote off
SELECT '$table', count(*) FROM $table;
EOF

done
}

function count_target {
local PSQL="sudo docker compose exec -T postgres psql -d hr -U postgres"
local filter=".Tables | sort_by(.Name | ascii_downcase) | .[] | @text

\"\(.Schema).\(.Name)\""↪

local tables=$(jq -r "$filter" .pg_migrate/Target.json)
for table in $tables; do

$PSQL --csv --pset pager=off -tc "SELECT '$table', count(*) FROM $table"
done

}

Exécuter le décompte avec la commande suivante.

$ paste -d ',' <(count_source) <(count_target) | column -s, -t
HR.COUNTRIES 35 public.countries 35
HR.DEPARTMENTS 27 public.departments 27

50 Découverte de PostgreSQLMigrator

DALIBOWorkshops

HR.EMPLOYEES 907 public.employees 907
HR.JOB_EVALUATIONS 45000 public.job_evaluations 45000
HR.JOB_HISTORY 28010 public.job_history 28010
HR.JOBS 29 public.jobs 29
HR.LOCATIONS 1523 public.locations 1523
HR.REGIONS 5 public.regions 5

Valider l’intégrité d’un échantillon de données.

Le deuxième contrôle vise à certifier que la donnéen’a pas subi de transformation au cours de la copie.
Le changement d’encodage des chaînes de caractères ou la troncature non désirée d’une valeur sont
des erreurs que nous souhaitons éviter à tout prix.

Créer les deux fonctionsselect_* suivantes. Elles établissent une connexion à leur base respective,
exécutent la requête passée en paramètre et formatent le résultat au format CSV. Une attention parti‑
culière est nécessaire pour afficher correctement les données afin qu’elles aient un rendu équivalent
entre les deux systèmes.

function select_source {
test -z "$1" && return
local SQLPLUS="sudo docker compose exec -T oracle sqlplus -S

hr/phoenix@localhost/hr"↪

n=$'\n'; cat <<- EOF | $SQLPLUS | grep -v '^$'
set newpage none head off feedback off
set markup csv on quote off
column salary format 999999.99
column commission_pct format 0.99
column score format 99.9
alter session set nls_date_format='YYYY-MM-DD';
alter session set nls_timestamp_format='YYYY-MM-DD HH24:MI:SS';
alter session set nls_timestamp_tz_format='YYYY-MM-DD HH24:MI:SSTZH';
$1;
EOF
}

function select_target {
test -z "$1" && return
local PSQL="sudo docker compose exec -T postgres psql -d hr -U postgres"
$PSQL --csv --pset pager=off -tc "$1"

}

À présent, nous pouvons lancer la commande suivante pour comparer les résultats d’une requête qui
parcourt une fraction de la table employees. Si la commande n’affiche aucun résultat, les données
sont scrupuleusement identiques.

diff -u \

Découverte de PostgreSQLMigrator 51

DALIBOWorkshops

<(select_source "SELECT * FROM hr.employees WHERE MOD(employee_id, 10) = 0 ORDER BY
employee_id") \↪

<(select_target "SELECT * FROM public.employees WHERE employee_id % 10 = 0 ORDER BY
employee_id")↪

LacomparaisondesdonnéesCLOBestpluscoûteuseen ressources. Pour la tablejob_evaluations,
nous allons uniquement compter le nombre de caractères dans la colonne comments à l’aide des
méthodes DBMS_LOB.GETLENGTH et char_length.

diff -u \
<(select_source "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS';

SELECT evaluation_id, employee_id, evaluator_id,
evaluation_date, score, DBMS_LOB.GETLENGTH(comments)

FROM hr.job_evaluations
WHERE MOD(evaluation_id, 500) = 0
ORDER BY evaluation_id") \

<(select_target "SELECT evaluation_id, employee_id, evaluator_id,
evaluation_date, score, char_length(comments)

FROM public.job_evaluations
WHERE evaluation_id % 500 = 0
ORDER BY evaluation_id")

52 Découverte de PostgreSQLMigrator

DALIBOWorkshops

6.2 TÂCHES DEMAINTENANCE

La bascule du modèle et des données vers PostgreSQL s’accompagne d’une série d’opérations de
maintenance qui dépend de votre organisation. L’activation de les sondes de supervision et la planifi‑
cation des sauvegardes sont sans conteste les premières actions à entreprendre pour assurer le suivi
et la sécurité de la plateforme.

Réaliser un VACUUM FREEZE pour sécuriser les données à terme.

Une opération préventive, appelée gel des lignes, est fortement recommandée à l’issue d’un charge‑
ment massif de lignes dans une base PostgreSQL.

Rappelons qu’un numéro de transaction est attaché à chaque nouvelle ligne dans une base, afin de
garantir l’isolation des sessions entre elles. Or ces numéros de transaction sont encodés sur 32 bits
et sont recyclés à terme. Il y a donc un risque de mélanger les opérations passées et celles à venir
aumoment du rebouclage (wraparound). Afin d’éviter ce phénomène, l’opération VACUUM FREEZE
« gèle » les vieux enregistrements, afin que ceux‑ci ne se retrouvent pas brusquement dans le futur.

Exécuter la commande suivante pour déclencher un gel préventif des table de la base hr. Il est possi‑
ble de traiter plusieurs tables simultanément avec l’option --jobs.

$ sudo docker compose exec -ti postgres vacuumdb -U postgres --freeze --jobs=4 hr
vacuumdb: vacuuming database "hr"

Découverte de PostgreSQLMigrator 53

Notes

55

Notes

57

Notes

59

Nos autres publications

61

DALIBOWorkshops

FORMATIONS

– DBA1 : Administration PostgreSQL
https://dali.bo/dba1

– DBA2 : Administration PostgreSQL avancé
https://dali.bo/dba2

– DBA3 : Sauvegarde et réplication avec PostgreSQL
https://dali.bo/dba3

– DEVPG : Développer avec PostgreSQL
https://dali.bo/devpg

– PERF1 : PostgreSQL Performances
https://dali.bo/perf1

– PERF2 : Indexation et SQL avancés
https://dali.bo/perf2

– MIGORPG : Migrer d’Oracle à PostgreSQL
https://dali.bo/migorpg

– HAPAT : Haute disponibilité avec PostgreSQL
https://dali.bo/hapat

62 Découverte de PostgreSQLMigrator

https://dali.bo/dba1
https://dali.bo/dba2
https://dali.bo/dba3
https://dali.bo/devpg
https://dali.bo/perf1
https://dali.bo/perf2
https://dali.bo/migorpg
https://dali.bo/hapat

DALIBOWorkshops

LIVRES BLANCS

– Migrer d’Oracle à PostgreSQL
https://dali.bo/dlb01

– Industrialiser PostgreSQL
https://dali.bo/dlb02

– Bonnes pratiques de modélisation avec PostgreSQL
https://dali.bo/dlb04

– Bonnes pratiques de développement avec PostgreSQL
https://dali.bo/dlb05

Découverte de PostgreSQLMigrator 63

https://dali.bo/dlb01
https://dali.bo/dlb02
https://dali.bo/dlb04
https://dali.bo/dlb05

DALIBOWorkshops

TÉLÉCHARGEMENT GRATUIT

Les versions électroniques de nos publications sont disponibles gratuitement sous licence open
source ou sous licence Creative Commons.

64 Découverte de PostgreSQLMigrator

7/ DALIBO, L’Expertise PostgreSQL

Depuis 2005, DALIBO met à la disposition de ses clients son savoir‑faire dans le domaine des bases
de données et propose des services de conseil, de formation et de support aux entreprises et aux
institutionnels.

En parallèle de son activité commerciale, DALIBO contribue aux développements de la communauté
PostgreSQL et participe activement à l’animation de la communauté francophone de PostgreSQL. La
société est également à l’origine de nombreux outils libres de supervision, de migration, de sauveg‑
arde et d’optimisation.

Le succès de PostgreSQLdémontre que la transparence, l’ouverture et l’auto‑gestion sont à la fois une
source d’innovation et un gage de pérennité. DALIBO a intégré ces principes dans son ADN en optant
pour le statut de SCOP : la société est contrôlée à 100 % par ses salariés, les décisions sont prises
collectivement et les bénéfices sont partagés à parts égales.

65

	Introduction
	Tour de table
	Déroulé de l’atelier
	Prérequis de l’atelier

	Présentation
	Ambitions (1/3)
	Ambitions (2/3)
	Ambitions (3/3)
	Fonctionnalités (1/4)
	Fonctionnalités (2/4)
	Fonctionnalités (3/4)
	Fonctionnalités (4/4)

	Exercice #1
	Installation de PostgreSQL Migrator
	Inspecter le catalogue
	Création du rapport d’évaluation

	Exercice #2
	Conversions génériques
	Naviguer dans l’interface graphique
	Procéder à des modifications du modèle
	Générer le modèle de données converti au format SQL

	Exercice #3
	Configuration de la base cible
	Création des tables
	Copie des données
	Création des index et des contraintes

	Exercice #4
	Validation des données
	Tâches de maintenance

	Notes
	Notes
	Notes
	Nos autres publications
	Formations
	Livres blancs
	Téléchargement gratuit

	DALIBO, L’Expertise PostgreSQL

