

 Découverte de PostgreSQL Migrator

 Atelier Migration PostgreSQL Migrator

 Dalibo & Contributors

Découverte de PostgreSQL Migrator

[image:]

Introduction

Tour de table

	« Avez-vous un ou des projets de migration vers PostgreSQL ? »

	« Depuis quel système ? Oracle, MySQL, SQL Server ? »

	« Quels outils ou techniques avez-vous employés ? »

	« Quelles ont été les principales difficultés ? »

Déroulé de l’atelier

	3 heures

	Présentation de PostgreSQL Migrator

	Travaux pratiques sur la base HR

	Manipulation de l’outil

	Analyse de la complexité

	Migration des tables et des données

Prérequis de l’atelier

	Un terminal

	Une VM Rocky Linux 9 ou équivalent

	Compétences Linux et SQL

	Une instance Oracle (image gvenzl/oracle-free:23-slim)

	Une instance PostgreSQL 18

Environnement

L’ensemble des travaux pratiques nécessite une base de données Oracle dans un conteneur. Le modèle de données est le traditionnel schéma HR avec des adaptations.

Installer docker-ce et docker-compose-plugin et démarrer le service.

https://docs.docker.com/engine/install/rhel/#installation-methods

$ sudo dnf -y update
$ sudo dnf -y install dnf-plugins-core
$ sudo dnf config-manager --add-repo https://download.docker.com/linux/rhel/docker-ce.repo
$ sudo dnf -y install -y docker-ce docker-ce-cli containerd.io docker-compose-plugin
$ sudo systemctl enable --now docker

Démarrer les conteneurs Oracle et PostgreSQL

Un fichier docker-compose.yml est disponible en téléchargement.

$ curl -s -kL https://dali.bo/tp_migpg -o - | tar xvz
$ sudo docker compose up -d oracle postgres

Présentation

Ambitions (1/3)

Moderniser la migration avec des logiciels libres.

	Un outil universel

	Couplé à transqlate pour la conversion du code

	Sous licence PostgreSQL

	Hébergé sur Gitlab.com

	Langages Go (backend) et Vue.js (frontend)

[image:]

Ambitions (2/3)

Proposer une gouvernance solide

	Le projet rejoint le Dalibo Labs

	Travail conjoint entre les DBA et les DEV

	Itérations de deux semaines

	Intégration et livraison continues (CI/CD)

[image:]

Ambitions (3/3)

Favoriser drastiquement la prise en main

	Simplification de l’installation

	Navigation graphique dans le modèle de données à convertir

	Identification des points chaud du chantier

	Peu de configurations superflues

	Orchestration des tâches de copie automatique et optimisée

	Documentation

Fonctionnalités (1/4)

Un binaire unique en Go

	Aucune dépendance à installer sur le système

	Pilotes communautaires : Oracle, MySQL

	Ligne de commande simple et moderne

	Serveur Web embarqué (Vue.js)

Fonctionnalités (2/4)

Mode hors-ligne

	Inspection de la base source vers des fichiers JSON

	Exploitation des données sans besoin de connexion

	Analyse des points chauds

	Conversion du modèle pour PostgreSQL au format SQL

	Versionnement pour le travail collaboratif

Fonctionnalités (3/4)

Transfert des données performant

	Langage compilé

	Techniques de transfert optimisé

	COPY en flux continu

	Maîtrise de la consommation mémoire

	Réutilisation des connexions ouvertes

	Support des BLOB/CLOB

[image:]

[image:]

Fonctionnalités (4/4)

Interface graphique (Web)

	Navigation dans les modèles source et cible

	Définition des objets relationnels et procéduraux

	Recherche globale

	À terme

	Assistant à la conversion

	Progression du transfert des données

	Édition / correction du code PL/pgSQL

Exercice #1

	Installation de PostgreSQL Migrator

	Inspection de la base source

	Générer un rapport d’évaluation

Installation de PostgreSQL Migrator

Télécharger et installer la dernière version de l’outil

Se rendre sur la page du projet et télécharger le dernier paquet disponible pour Redhat. Les formats .deb et .rpm sont à privilégier.

	https://gitlab.com/dalibo/pg_migrate/-/releases/permalink/latest

$ v=1.0.0-beta.7
$ d=https://gitlab.com/dalibo/pg_migrate/-/releases/v${v}/downloads
$ sudo dnf -y install ${d}/pg-migrate_${v}_linux_amd64.rpm

Inspecter le catalogue

Découvrir les sous-commandes de l’outil.

PostgreSQL Migrator dispose d’une interface en ligne de commande (CLI) nommée pg_migrate. Chaque étape du chantier de migration est rattachée à une des sous-commandes de la CLI.

$ pg_migrate --help
Usage: pg_migrate [OPTIONS] COMMAND

Commands:
 convert Convert source catalog for PostgreSQL
 dump Dumps a source database as text files or to stdin
 init Initialize a new migration project
 inspect Fetch and analyse source database catalog
 report Generate a migration report
 status Describe a migration project
 ui Interactive audit web interface

Devant chaque sous-commande, il est possible de changer le comportement de la CLI avec les options générales comme --verbose ou --plain.

General Options:
 -C, --directory string Change to directory before doing anything
 -?, --help Print help and exit
 --offline Prevent source database access
 --plain Disable log coloration
 --skip-date-warning Suppress the warning about outdated build
 -v, --verbose Show debug log messages
 -V, --version Print version and exit

Enfin, certaines variables d’environnement sont documentées et peuvent être valorisées depuis le contexte d’exécution.

Environment variables:

 PGMDIRECTORY Change to directory before doing anything.
 PGMOFFLINE Set to true prevent source database access.

Initialiser le répertoire de travail.

Pour chaque projet de migration, il est nécessaire d’initialiser un répertoire de travail à partir de la chaîne de connexion et d’un compte de connexion.

$ pg_migrate init --source oracle://hr:phoenix@localhost/hr atelier
09:54:08 INFO Opening database connection pool. key=source driver=oracle dsn=or:hr@localhost/hr
09:54:08 INFO Connecting to database. key=source count=1
09:54:08 INFO Initialized migration project. source="Oracle Database 23ai Free" version=23.0.0.0.0 path=atelier
09:54:08 INFO Databases connections closed. source=1 target=0

Découvrir les fichiers du projet.

La commande init crée une série de fichiers dans le dossier de travail. Le dossier caché .pg_migrate est garant de l’état du projet et ne doit pas être modifié à la main.

Le fichier .env contient les variables d’environnement du projet, tel que PGMSOURCE qui correspond au paramètre --target de la commande précédente. Enfin, le fichier pg_migrate.toml permet de configurer le comportement de PostgreSQL Migrator durant toutes les étapes du projet.

atelier
├── Annotations.jq
├── .env
├── .gitignore
├── .pg_migrate
│ └── Info.json
├── pg_migrate.toml
├── report.md.tmpl
├── Summary.jq
└── Total.jq

Les fichiers .jq et .md.tmpl sont respectivement les filtres pour manipuler les données JSON du projet, et les templates pour la présentation de ces données.

Exécuter la commande d’inspection.

Avant toute chose, il faut se positionner dans le répertoire de travail, là où la commande pg_migrate consulte les fichiers du dossier .pg_migrate et le contenu du fichier .env.

Lancer la sous-commande inspect. Si besoin, l’option --verbose peut s’intercaler entre la commande pg_migrate et la sous-commande.

$ cd atelier/
$ pg_migrate inspect
09:55:38 INFO Opening database connection pool. key=source driver=oracle dsn=or:hr@localhost/hr
09:55:38 INFO Connecting to database. key=source count=1
09:55:38 INFO Inspecting source database. driver=oracle
09:55:38 INFO Inspected metadata. instance=FREE software="Oracle Database 23ai Free" version=23.9.0.25.07
09:55:38 WARN Failed to query database size. err="ORA-00942: table or view \"SYS\".\"DBA_SEGMENTS\" does not exist\n error occur at position: 44"
09:55:38 INFO Found sequences. count=4
09:55:39 INFO Found procedures. count=2
09:55:39 INFO Found functions. count=2
09:55:39 INFO Found packages. count=2
09:55:39 INFO Found views. count=1
09:55:41 INFO Found tables. count=8
09:55:41 INFO Connecting to database. key=source count=5
09:55:41 INFO Found table triggers. count=6
09:55:47 INFO Found tables keys. count=9
09:55:49 INFO Found foreign keys. count=12
09:55:52 INFO Found tables checks. count=2
09:55:56 INFO Found tables indexes. count=2
09:55:56 INFO Inspected schema. name=HR

Plusieurs avertissements s’affichent à l’écran pour nous informer que l’inspection a rencontré une ou plusieurs erreurs à la lecture du catalogue distant. L’inspection est dite partielle, ce qui signifie que des informations sont manquantes pour établir une évaluation complète.

Dans le cas présent, le compte de connexion “HR” n’a pas les autorisations pour consulter les vues du catalogue Oracle.

09:55:56 WARN Partial inspection. See errors below.
09:55:56 WARN You can use the catalog but some objects may be missing or incomplete.
09:55:56 WARN Ensure you have the necessary privileges.
09:55:56 WARN Soure database version may not be supported.

L’inspection se poursuit avec une phase d’audit du catalogue extrait de la base distante. Cette étape permet d’identifier des faiblesses du modèle de données, ainsi que les complications éventuelles lors de la conversion. Durant cette étape, chaque composant (table, vue, index, procédure stockée) se voit attribué un score de complexité ainsi qu’une série d’annotations si nécessaire.

Une première conversion du modèle est réalisée dans la foulée. Cette opération va consulter le catalogue local de la base source, contenu dans le fichier .pg_migrate/Source.json pour en produire le fichier .pg_migrate/Target.json. Il contient la même structure que le fichier Source.json mais avec certaines conversions génériques.

09:55:56 INFO Auditing catalog. driver=oracle
09:55:56 INFO Catalog audited.
09:55:56 INFO Converted catalog for PostgreSQL.
09:55:56 INFO Auditing catalog. driver=oracle
09:55:56 WARN Target catalog has pending annotations. count=16
09:55:56 INFO Databases connections closed. source=5 target=0

Recommencer l’inspection avec un compte privilégié.

Relancer la commande init depuis le répertoire pour modifier le compte de connexion. Un compte privilégié comme system ne rencontrera pas les erreurs d’inspection. Il est aussi possible d’octroyer les bons privilèges au compte hr en respectant les prérequis indiqués dans la documentation.

$ pg_migrate init --source oracle://system:manager@localhost/hr

Relancer l’inspection. Le catalogue ainsi extrait est stocké dans le fichier .pg_migrate/Source.json.

$ pg_migrate inspect

Création du rapport d’évaluation

Exécuter la sous-commande report depuis votre répertoire de travail.

$ pg_migrate report
16:25:41 INFO Generating JSON report. report=Annotations.json filter=Annotations.jq
16:25:41 INFO Generating JSON report. report=Summary.json filter=Summary.jq
16:25:41 INFO Generating JSON report. report=Total.json filter=Total.jq
16:25:41 INFO Generating Markdown report. report=report.md template=report.md.tmpl

Consulter librement le contenu du rapport nommé report.md. Un tableau récapitulatif reprend le décompte des composants du catalogue, leur taille si applicable, leur score et le nombre d’annotations pour chaque catégorie.

	Object
	Count
	Size
	Score
	Annotations

	Roles
	2
	
	2.0
	0

	Schemas
	1
	
	0.1
	0

	Sequences
	4
	
	0.4
	0

	Tables
	8
	1.2GB
	25.8
	7

	Triggers
	6
	
	12.7
	4

	Views
	1
	
	8.1
	1

	Indexes
	13
	4.1MB
	2.7
	0

	Procedures
	2
	
	4.7
	0

	Functions
	2
	
	4.9
	0

	Packages
	2
	
	59.8
	5

Plus bas, une liste des annotations est fournie pour mettre en lumière les principales causes de la complexité de la base de donnée.

	2 Column with missing precision.

	1 View with read only view.

	1 Package with transqlate: NULL comparison on identifier.

	2 Procedure with transqlate: NULL comparison on identifier.

	4 Trigger with transqlate: NULL comparison on identifier.

	1 Column with type CLOB.

	2 Package with unparsed statements.

Enrichir le rapport en ajoutant un décompte des colonnes par type de données.

Il est possible de composer un rapport en manipulant deux catégories de fichiers. La nature flexible et programmable de ce mécanisme de composition vous permet d’enrichir le rapport avec les données de votre choix.

	Les filtres .jq permettent de réduire et de manipuler des données brutes au format JSON, ici Source.json ;

	Les templates .md.tmpl incorporent les données filtrées dans un fichier final au format Markdown.

Nous souhaitons décompter les nombres de colonnes en fonction de leur type de données. Pour y parvenir, créer un fichier Types.jq dans le projet avec le contenu suivant :

[$Source[].Tables[]?.Columns[].Type.Name]
| group_by(.)
| map({Name: .[0], Count: length})
| sort_by(.Count)
| reverse

Ce filtre liste les types des toutes les colonnes de table du fichier Source.json et les regroupe par nom en créant un tableau associatif trié. Ce tableau peut ensuite être manipulé dans un template à l’aide d’une boucle range. Consulter la documentation text/template du langage Go pour plus de précision.

Modifier le fichier report.md.tmpl en ajoutant le bout de code suivant :

Types de colonnes
{{ range $type := .Types }}
- {{ $type.Count }} {{ $type.Name }}
{{- end }}

Exécuter à nouveau la sous-commande report.

Le moteur de rapport détecte que le template a été modifié et s’appuie sur la donnée du fichier Types.json, lui-même déclaré par le filtre Types.jq. Le fichier intermédiaire est créé et le rapport report.md est mis à jour avec la nouvelle section « Types de colonnes ».

$ pg_migrate report
15:18:17 INFO Generating JSON report. report=Types.json filter=Types.jq
15:18:17 INFO Generating Markdown report. report=report.md template=report.md.tmpl

La base HR contient 21 colonnes, dont la répartition par type est listée ci-dessous.

	19 NUMBER

	15 VARCHAR2

	4 DATE

	2 CHAR

	1 CLOB

Exercice #2

	Écrire des règles de conversion

	Naviguer dans l’interface graphique

	Exporter le modèle dans des fichiers plats

Conversions génériques

Exécuter la commande pg_migrate convert --refresh en mode verbeux.

Se positionner dans le dossier du projet et relancer une opération de conversion. La page de documentation décrit les conversions génériques réalisées durant cette étape.

$ pg_migrate --verbose convert --refresh
...
... from=CHAR(2) to=char(2) path=Tables/HR.COUNTRIES/Columns/COUNTRY_ID
... from=VARCHAR2(60) to=varchar(60) path=Tables/HR.COUNTRIES/Columns/COUNTRY_NAME
... from=NUMBER to=numeric path=Tables/HR.COUNTRIES/Columns/REGION_ID
... from="NUMBER(4, 0)" to=smallint path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID
... from=VARCHAR2(30) to=varchar(30) path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_NAME
... from="NUMBER(6, 0)" to=integer path=Tables/HR.DEPARTMENTS/Columns/MANAGER_ID

Le mode verbeux vous donne plus de détails sur les modifications opérées. Par exemple, les types NUMBER(6, 0) d’Oracle sont convertis en integer. L’option --verbose est globale et se positionne avant la sous-commande. La deuxième option --refresh est propre à la sous-commande et se positionne après cette dernière. Elle force la réécriture intégrale du fichier Source.json.

Une exploration plus périlleuse des fichiers JSON est tout à fait possible. L’exemple ci-dessous permet de cibler les différences entre les deux fichiers pour la colonne employees.employee_id.

$ expr='.Tables[].Columns[] | select(.objectPath | match("Tables/hr.employees/Columns/employee_id";"i")) | .Type'
$ diff <(jq -r "$expr" .pg_migrate/Source.json) <(jq -r "$expr" .pg_migrate/Target.json)
2,6c2
< "Name": "NUMBER",
< "Params": [
< "6",
< "0"
<]

> "Name": "integer"

Naviguer dans l’interface graphique

Exécuter la commande pg_migrate ui.

L’outil PostgreSQL Migrator embarque un serveur web interne pour présenter le contenu des fichiers JSON sous une forme graphique et interactive. La page d’accueil vous fournit les éléments clés de l’inspection, similaire au rapport Markdown généré précédemment. Sur la page d’accueil, on y retrouve la version du moteur, le poids cumulé des tables et des index, la somme du nombre de lignes issues des composants procéduraux, etc.

[image:]

Consulter tous les composants de la base de données.

Naviguer à l’intérieur de la base Oracle pour obtenir la liste de ses objets. Il est possible de filtrer depuis une barre de recherche pour accéder à un objet en particulier. Si vous tapez le mot « history » dans la recherche globale, un résultat s’affiche pour lister les composants comportant ce mot dans leur définition ou la définition de leur parent.

Trier par score.

Le score d’un composant est calculé selon plusieurs critères, tels que son type, le nombre de colonne ou des lignes de codes qui le constituent. Un tableau récapitulatif de tous les scores est accessible sur une page de la documentation. La somme de tous les scores permet de déterminer la complexité de la migration d’une base de données dans son ensemble. Les composants dont les scores sont les plus élevés, sont a priori les plus complexes à porter vers PostgreSQL.

[image:]

Consulter la définition de la table EMPLOYEES.

Cliquer sur la table HR.EMPLOYEES de la liste et sélectionner le tri par défaut. Les composants représentent tout objet rattaché dans la table, comme les colonnes, les index ou les triggers. L’onglet « JSON » fournit le détail du composant, tel que présenté dans le fichier d’inventaire.

[image:]

Consulter la version convertie de la table EMPLOYEES.

Dans la colonne de droite, un lien permet d’aller vers la définition de l’objet converti. On y retrouve les conversions de colonnes NUMBER(6, 0) en integer.

[image:]

Procéder à des modifications du modèle

Renommer le schéma HR en public.

Il est possible de définir des conversions personnalisées avec le fichier de configuration pg_migrate.toml. Chaque composant du modèle source dispose d’un chemin unique (le path) pour le distinguer et lui appliquer des transformations. Éditer le fichier avec un éditeur de texte et copier les lignes suivantes :

[[Convert.Rules]]
Path = "Schemas/HR"
Name = "public"

Déclarer toutes les colonnes faisant référence à DEPARTMENTS.DEPARTMENT_ID en integer.

Nous voulons définir des règles de transformation sur les colonnes de certaines tables. Éditer à nouveau le fichier pg_migrate.toml.

[[Convert.Rules]]
Path = "Tables/HR.EMPLOYEES/Columns/DEPARTMENT_ID"
Type = "integer"

[[Convert.Rules]]
Path = "Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID"
Type = "integer"

[[Convert.Rules]]
Path = "Tables/HR.JOB_HISTORY/Columns/DEPARTMENT_ID"
Type = "integer"

Déclarer toutes les colonnes de type DATE en date, sauf pour la colonne JOB_EVALUATIONS.EVALUATION_DATE qui devra être convertie en timestamp without time zone.

La règle Convert.DataTypes surcharge les conversions génériques et sera appliquée pour toutes les colonnes dont le type est déclaré à la gauche du symbole « = ». La casse est ignorée.

[Convert.DataTypes]
"DATE" = "date"

[[Convert.Rules]]
Path = "Tables/HR.JOB_EVALUATIONS/Columns/EVALUATION_DATE"
Type = "timestamp without time zone"

N’oubliez pas de relancer une conversion du modèle afin que la configuration puisse être prise en compte. Pour aller plus loin, une page de documentation reprend les syntaxes et les règles de transformation possibles.

$ pg_migrate --verbose convert --refresh
...
... Overriding datatype rule. match=date
... Converting object identifier. from=HR to=public path=Schemas/HR
... Converting column type. from="NUMBER(4, 0)" to=bigint path=Tables/HR.DEPARTMENTS/Columns/DEPARTMENT_ID
... Converting column type. from="NUMBER(4, 0)" to=bigint path=Tables/HR.EMPLOYEES/Columns/DEPARTMENT_ID
... Converting column type. from="NUMBER(4, 0)" to=bigint path=Tables/HR.JOB_HISTORY/Columns/DEPARTMENT_ID
... Converting column type. from=DATE to="timestamp without time zone" path=Tables/HR.JOB_EVALUATIONS/Columns/EVALUATION_DATE
... Converting column type. from=DATE to=date path=Tables/HR.EMPLOYEES/Columns/HIRE_DATE
... Converting column type. from=DATE to=date path=Tables/HR.JOB_HISTORY/Columns/START_DATE
... Converting column type. from=DATE to=date path=Tables/HR.JOB_HISTORY/Columns/END_DATE

Générer le modèle de données converti au format SQL

Consulter les annotations du modèle converti.

Revenez sur la page d’accueil pour naviguer dans le catalogue PostgreSQL. L’onglet « Annotations » vous révèle les actions requises avant l’export, ainsi que les fonctionnalités non implémentées de PostgreSQL Migrator.

[image:]

L’outil est réglé pour ne pas exporter le schéma et ses données s’il existe des annotations non prises en compte. Un message d’erreur survient lors de l’export avec la commande pg_migrate dump.

$ pg_migrate dump
15:59:13 ERROR Target model has pending annotations. len=16
15:59:13 ERROR Use --force to dump anyway.

Pour ignorer ce comportement, nous allons ajouter une instruction dans le fichier pg_migrate.toml.

[Dump]
Force = true

Exécuter la commande pg_migrate dump --target files --schema-only.

La sous-commande dump est responsable de l’export des objets et de leurs données dans un format SQL compatible avec PostgreSQL. L’option --target permet de définir l’endroit où seront écrites les instructions. Pour le moment, nous souhaitons un aperçu des structures converties dans des fichiers plats.

$ pg_migrate dump --target files --schema-only
17:22:58 INFO Writing queries to dump/ directory.
17:22:58 INFO Create role. name=pdbadmin path=00002-Roles-pdbadmin-create.sql
17:22:58 INFO Create role. name=hr path=00001-Roles-hr-create.sql
17:22:58 INFO Create schema. name=public path=00003-Schemas-public-create.sql
17:22:58 INFO Create table. name=public.employees path=00006-Tables-public.employees-create.sql
17:22:58 INFO Create table. name=public.jobs path=00007-Tables-public.jobs-create.sql
17:22:58 INFO Create table. name=public.departments path=00005-Tables-public.departments-create.sql
17:22:58 INFO Create table. name=public.locations path=00009-Tables-public.locations-create.sql
17:22:58 INFO Create table. name=public.countries path=00004-Tables-public.countries-create.sql
17:22:58 INFO Create table. name=public.job_history path=00008-Tables-public.job_history-create.sql
17:22:58 INFO Create sequence. name=public.locations_seq. path=00014-Sequences-public.locations_seq-create.sql
17:22:58 INFO Create sequence. name=public.evaluations_seq. path=00013-Sequences-public.evaluations_seq-create.sql
17:22:58 INFO Create table. name=public.regions path=00010-Tables-public.regions-create.sql
17:22:58 INFO Create sequence. name=public.employees_seq. path=00012-Sequences-public.employees_seq-create.sql
17:22:58 INFO Create sequence. name=public.departments_seq. path=00011-Sequences-public.departments_seq-create.sql
...

L’option --schema-only est similaire à celle de l’outil pg_dump. Il s’agit d’un raccourci pour les options --section=pre-data et --section=post-data. N’hésitez pas à consulter l’aide depuis la ligne de commande pour plus de détails.

$ pg_migrate dump --help
Usage: pg_migrate [OPTIONS] dump [OPTIONS]

Generates DDL and/or COPY for target PostgreSQL.
Executes statements in defined PostgreSQL target database
or writes to stdout or files.
Requires successful convert.

Options:
 -c, --clean clean (drop) objects before recreating
 or truncate table before copy
 -a, --data-only dump only the data, not the schema
 -f, --force ignore unhandled annotations
 -?, --help Show help
 -j, --jobs int use this many parallel jobs to dump (default 4)
 --refresh-stats refresh table statistics before planning dump (default true)
 -s, --schema-only dump only the schema, no data
 --section string dump named section (pre-data, data, post-data)
 --target string DSN for query execution

--target can be stdout, files or a PostgreSQL DSN.

If stdout is not a terminal, writes to stdout.
Else if PGMTARGET is defined, sends to PostgreSQL target database.
Force file output with --target=files.

See pg_migrate --help for more informations.

Consulter les fichiers présents dans le répertoire dump/.

Les fichiers SQL générés par la commande précédente sont accessibles depuis le dossier dump/ du répertoire de travail.

$ tree dump/
dump/
├── 00001-Roles-hr-create.sql
├── 00002-Roles-pdbadmin-create.sql
├── 00003-Schemas-public-create.sql
├── 00004-Tables-public.countries-create.sql
├── 00005-Tables-public.departments-create.sql
├── 00006-Tables-public.employees-create.sql
├── 00007-Tables-public.job_evaluations-create.sql
├── 00008-Tables-public.job_history-create.sql
├── 00009-Tables-public.jobs-create.sql
├── 00010-Tables-public.locations-create.sql
├── 00011-Tables-public.regions-create.sql
...
├── 20029-Tables-public.job_evaluations-ForeignKeys-eval_employee_fk-create.sql
├── 20030-Tables-public.job_evaluations-ForeignKeys-eval_evaluator_fk-create.sql
├── 20031-Tables-public.job_history-ForeignKeys-jhist_dept_fk-create.sql
├── 20032-Tables-public.job_history-ForeignKeys-jhist_emp_fk-create.sql
├── 20033-Tables-public.job_history-ForeignKeys-jhist_job_fk-create.sql
└── 20034-Tables-public.locations-ForeignKeys-loc_c_id_fk-create.sql

La table employees est conforme à ce que nous attendions. Le schéma de destination est bien public et les colonnes department_id et hire_date sont respectivement de type integer et date.

--
-- Name: employees; Type: TABLE; Schema: public; Owner: unknown
--

CREATE TABLE "public"."employees" (
 "employee_id" integer,
 "first_name" varchar(20),
 "last_name" varchar(25),
 "email" varchar(25),
 "phone_number" varchar(20),
 "hire_date" date,
 "job_id" varchar(10),
 "salary" numeric(8, 2),
 "commission_pct" numeric(2, 2),
 "manager_id" integer,
 "department_id" integer
);

Exercice #3

	Création des tables

	Copie des données

	Création des index et des contraintes

Configuration de la base cible

Démarrer l’instance PostgreSQL.

Si ce n’est pas déjà le cas, démarrer le conteneur PostgreSQL dans lequel nous réaliserons la copie des données. L’authentification trust est active et permet de ne pas s’encombrer d’un mot de passe (mais ne le faites pas chez vous !).

$ sudo docker compose up -d postgres

Créer une nouvelle base nommée hr.

La base hr doit être créée comme suit. Le compte postgres en est le propriétaire durant la phase de migration et pourra être changé a posteriori.

$ sudo docker compose exec -ti postgres createdb -U postgres hr

Configurer le projet pour se connecter à l’instance.

Pour la suite des commandes, nous souhaitons renseigner l’adresse de connexion de cette nouvelle instance pour que PostgreSQL Migrator y crée les composants à notre place. Lancer une initialisation avec un nouvel argument --target depuis le répertoire de projet.

$ pg_migrate init \
 --source=oracle://system:manager@localhost/hr \
 --target=postgres://postgres@localhost/hr

Cela revient à ajouter contrôler l’accès et l’authentification à l’instance avant d’ajouter une ligne dans le fichier .env. La variable d’environnement PGMTARGET est alors disponible pour déterminer la destination des instructions SQL lors de l’exécution de la commande pg_migrate dump.

$ cat .env
PGMSOURCE=oracle://system:manager@localhost/hr
PGMTARGET=postgresql://postgres@localhost/hr

Création des tables

La première étape de la migration consiste à créer les tables converties dans la base vierge. Nous aurions pu utiliser les fichiers plats exportés précédemment avec l’option --target=files, nous jugeons que PostgreSQL Migrator peut s’en charger aussi bien avec son moteur interne d’exécution et d’orchestration.

Exécuter la commande pg_migrate dump --section=pre-data.

La phase dite « pre-data » réunit les composants initiaux qui accueilleront la donnée (comme les schémas et leurs tables), ainsi que tout autre composant dont la structure peut être définie sans relation avec de la donnée (comme les rôles, les séquences ou les vues).

$ pg_migrate dump --section=pre-data
17:11:14 WARN Ignoring unhandled annotations in target model. len=10
17:11:14 INFO Executing queries in target PostgreSQL.
17:11:14 INFO Create role. name=pdbadmin sn=00002
17:11:14 INFO Create schema. name=public sn=00003
17:11:14 INFO Create role. name=hr sn=00001
17:11:14 INFO Create table. name=public.jobs sn=00009
17:11:14 INFO Create table. name=public.job_evaluations sn=00007
17:11:14 INFO Create table. name=public.departments sn=00005
17:11:14 INFO Create table. name=public.regions sn=00011
17:11:14 INFO Create table. name=public.employees sn=00006
17:11:14 INFO Create table. name=public.locations sn=00010
17:11:14 INFO Create table. name=public.job_history sn=00008
17:11:14 INFO Create table. name=public.countries sn=00004
17:11:14 INFO Create sequence. name=public.locations_seq. sn=00015
17:11:14 INFO Create sequence. name=public.evaluations_seq. sn=00014
17:11:14 INFO Create sequence. name=public.employees_seq. sn=00013
17:11:14 INFO Create sequence. name=public.departments_seq. sn=00012

Contrôler la structure de la table public.employees.

Utiliser la commande docker compose exec pour interagir avec l’instance du conteneur et l’invite psql. La table employees est conforme aux conversions vues précédemment.

$ sudo docker compose exec -ti postgres psql -U postgres -d hr -c "\d public.employees"
 Table "public.employees"
 Column | Type | Collation | Nullable | Default
----------------+-----------------------+-----------+----------+---------
 employee_id | integer | | |
 first_name | character varying(20) | | |
 last_name | character varying(25) | | |
 email | character varying(25) | | |
 phone_number | character varying(20) | | |
 hire_date | date | | |
 job_id | character varying(10) | | |
 salary | numeric(8,2) | | |
 commission_pct | numeric(2,2) | | |
 manager_id | integer | | |
 department_id | integer | | |

Copie des données

L’étape suivante va alimenter les tables PostgreSQL avec les données en provenance des tables Oracle. L’orchestrateur interne sélectionne les tables les plus volumineuses en priorité et crée autant de processus que définis par l’argument --jobs (4 par défaut).

Exécuter la commande pg_migrate dump --data-only.

L’option --data-only est équivalente à --section=data. Si vous souhaitez recommencer la copie intégrale des tables, l’option --clean ajoutera une instruction truncate avant chaque table. Toutefois, assurez-vous de ne pas avoir créé de contraintes de clé étrangère.

Enfin, il est possible de désactiver la collecte des statistiques avec l’option --refresh-stats=false s’il y a eu peu de changement entre deux exports. Les statistiques servent à déterminer la priorité des tables entre elles.

$ pg_migrate dump --section=data
17:35:17 INFO Executing queries in target PostgreSQL.
17:35:17 INFO Collecting statistics, this may take a while...

À l’issue du traitement d’une table, une série de métriques permet d’appréhender le débit de transfert pour cette migration et d’envisager des optimisations pour tenter d’accélérer la phase de copie des données.

... table=public.regions elapsed=80ms data=54B rows=5 rate="62 rows/s" sn=10008
... table=public.departments elapsed=90ms data=643B rows=27 rate="300 rows/s" sn=10002
... table=public.jobs elapsed=10ms data=1.1KB rows=29 rate="2.9K rows/s" sn=10006
... table=public.employees elapsed=50ms data=78KB rows=907 rate="18.1K rows/s" sn=10003
... table=public.locations elapsed=60ms data=68.2KB rows=1523 rate="25.4K rows/s" sn=10007
... table=public.countries elapsed=10ms data=577B rows=35 rate="3.5K rows/s" sn=10001
... table=public.job_history elapsed=390ms data=1.6MB rows=28010 rate="71.8K rows/s" sn=10005
... table=public.job_evaluations elapsed=17.17s data=401.5MB rows=45000 rate="2.6K rows/s" sn=10004

Un résumé de l’ensemble est fourni dès que la dernière table a été traitée. Il permet de contrôler que le débit global est satisfaisant et de connaître la quantité de mémoire consommée au plus haut de l’activité de transfert (memory peak).

17:35:40 INFO Copy completed. tables=8 data=403.1MB elapsed=17.62s throughput=17.1MB/s jobs=4 mem=37.2MB

Une des tâches de copie consiste à rattraper les valeurs pour toutes les séquences du modèle converti.

17:35:23 INFO Restart sequences. schema=public sn=10009

Création des index et des contraintes

Exécuter la commande pg_migrate dump --section=post-data.

La création des index et l’activation des contraintes des tables arrivent en dernière étape, celle dite « post-data ». Durant cette étape, l’intégrité des données est mise à l’épreuve avec la validation des références de clés étrangères ou de l’unicité des données de colonne.

L’orchestrateur interne de PostgreSQL Migrator se charge de construire les index et les clés primaires en priorité et résout les dépendances croisées entre tables référencées pour limiter le risque de verrous (deadlocks).

$ pg_migrate dump --section=post-data
09:02:53 INFO Executing queries in target PostgreSQL.
09:02:53 INFO Create table key. name=public.jobs key=job_id_pk sn=20007
09:02:53 INFO Create table key. name=public.regions key=reg_id_pk sn=20009
09:02:53 INFO Create table key. name=public.job_evaluations key=eval_id_pk sn=20005
09:02:53 INFO Create table key. name=public.departments key=dept_id_pk sn=20002
09:02:53 INFO Create table key. name=public.employees key=emp_email_uk sn=20003
09:02:53 INFO Create table key. name=public.locations key=loc_id_pk sn=20008
09:02:53 INFO Create table key. name=public.job_history key=jhist_emp_id_st_date_pk sn=20006
09:02:53 INFO Create table key. name=public.countries key=country_c_id_pk sn=20001
09:02:53 INFO Create table key. name=public.employees key=emp_emp_id_pk sn=20004
09:02:53 INFO Create Index. name=public.departments idx=departments_location_id_idx sn=20010
09:02:53 INFO Create Index. name=public.locations idx=locations_city_idx sn=20020
09:02:53 INFO Create Index. name=public.employees idx=employees_department_id_idx sn=20011
09:02:53 INFO Create foreign key. name=public.countries fk=countr_reg_fk sn=20023
09:02:53 INFO Create Index. name=public.employees idx=employees_job_id_idx sn=20012
09:02:53 INFO Create Index. name=public.locations idx=locations_country_id_idx sn=20021
09:02:53 INFO Create Index. name=public.employees idx=employees_manager_id_idx sn=20013
09:02:53 INFO Create Index. name=public.locations idx=locations_state_province_idx sn=20022
09:02:53 INFO Create Index. name=public.employees idx=employees_last_name_first_name_idx sn=20014
09:02:53 INFO Create foreign key. name=public.departments fk=dept_loc_fk sn=20024
09:02:53 INFO Create foreign key. name=public.locations fk=loc_c_id_fk sn=20034
09:02:53 INFO Create Index. name=public.job_history idx=job_history_department_id_idx sn=20017
09:02:53 INFO Create foreign key. name=public.departments fk=dept_mgr_fk sn=20025
09:02:53 INFO Create Index. name=public.job_evaluations idx=job_evaluations_employee_id_idx sn=20015
09:02:53 INFO Create foreign key. name=public.employees fk=emp_dept_fk sn=20026
09:02:53 INFO Create foreign key. name=public.employees fk=emp_job_fk sn=20027
09:02:53 INFO Create foreign key. name=public.employees fk=emp_manager_fk sn=20028
09:02:53 INFO Create Index. name=public.job_history idx=job_history_employee_id_idx sn=20018
09:02:53 INFO Create Index. name=public.job_history idx=job_history_job_id_idx sn=20019
09:02:53 INFO Create Index. name=public.job_evaluations idx=job_evaluations_evaluator_id_idx sn=20016
09:02:53 INFO Create foreign key. name=public.job_history fk=jhist_dept_fk sn=20031
09:02:53 INFO Create foreign key. name=public.job_evaluations fk=eval_employee_fk sn=20029
09:02:53 INFO Create foreign key. name=public.job_history fk=jhist_emp_fk sn=20032
09:02:53 INFO Create foreign key. name=public.job_evaluations fk=eval_evaluator_fk sn=20030
09:02:53 INFO Create foreign key. name=public.job_history fk=jhist_job_fk sn=20033

Contrôler la structure de la table public.employees.

Les tables disposent bien de leur clé primaire et index. Les références de clé étrangères sont en place. Aucune erreur n’a été observée durant la phase post-data, les données sont cohérentes entre elles.

$ sudo docker compose exec -ti postgres psql -U postgres -d hr -c "\d public.employees"
 Table "public.employees"
 Column | Type | Collation | Nullable | Default
----------------+-----------------------+-----------+----------+---------
 employee_id | integer | | not null |
 first_name | character varying(20) | | |
 last_name | character varying(25) | | |
 email | character varying(25) | | |
 phone_number | character varying(20) | | |
 hire_date | date | | |
 job_id | character varying(10) | | |
 salary | numeric(8,2) | | |
 commission_pct | numeric(2,2) | | |
 manager_id | integer | | |
 department_id | integer | | |
Indexes:
 "emp_emp_id_pk" PRIMARY KEY, btree (employee_id)
 "emp_email_uk" UNIQUE CONSTRAINT, btree (email)
 "employees_department_id_idx" btree (department_id)
 "employees_job_id_idx" btree (job_id)
 "employees_last_name_first_name_idx" btree (last_name, first_name)
 "employees_manager_id_idx" btree (manager_id)
Foreign-key constraints:
 "emp_dept_fk" FOREIGN KEY (department_id) REFERENCES departments(department_id)
 "emp_job_fk" FOREIGN KEY (job_id) REFERENCES jobs(job_id)
 "emp_manager_fk" FOREIGN KEY (manager_id) REFERENCES employees(employee_id)
Referenced by:
 TABLE "departments" CONSTRAINT "dept_mgr_fk" FOREIGN KEY (manager_id) REFERENCES employees(employee_id)
 TABLE "employees" CONSTRAINT "emp_manager_fk" FOREIGN KEY (manager_id) REFERENCES employees(employee_id)
 TABLE "job_evaluations" CONSTRAINT "eval_employee_fk" FOREIGN KEY (employee_id) REFERENCES employees(employee_id)
 TABLE "job_evaluations" CONSTRAINT "eval_evaluator_fk" FOREIGN KEY (evaluator_id) REFERENCES employees(employee_id)
 TABLE "job_history" CONSTRAINT "jhist_emp_fk" FOREIGN KEY (employee_id) REFERENCES employees(employee_id)

Exercice #4

	Décompter les lignes entre les deux bases

	Contrôler l’intégrité des données

	Déclencher un VACUUM FREEZE

Validation des données

La validation de l’état des lignes est une étape cruciale pour prendre la décision de basculer les applications sur la nouvelle base PostgreSQL sans risque de perte d’information. Si le moindre doute subsiste sur la qualité ou la quantité de données, il faut envisager d’annuler les opérations de migration.

Pour le moment, PostgreSQL Migrator ne propose pas de rapport de validation d’une migration de données.

Décompter les lignes de plusieurs tables.

Il nous appartient de réaliser le décompte du nombre de lignes entre la base source et la base cible PostgreSQL. Les fonctions suivantes établissent une connexion à leur base respective et décomptent les lignes des tables issues du fichier Source.json.

function count_source {
 local SQLPLUS="sudo docker compose exec -T oracle sqlplus -S hr/phoenix@localhost/hr"
 local filter=".Tables | sort_by(.Name | ascii_downcase) | .[] | @text \"\(.Schema).\(.Name)\""
 local tables=$(jq -r "$filter" .pg_migrate/Source.json)
 for table in $tables; do
 cat <<- EOF | $SQLPLUS | grep -v '^$'
set newpage none head off feedback off
set markup csv on quote off
SELECT '$table', count(*) FROM $table;
EOF
 done
}

function count_target {
 local PSQL="sudo docker compose exec -T postgres psql -d hr -U postgres"
 local filter=".Tables | sort_by(.Name | ascii_downcase) | .[] | @text \"\(.Schema).\(.Name)\""
 local tables=$(jq -r "$filter" .pg_migrate/Target.json)
 for table in $tables; do
 $PSQL --csv --pset pager=off -tc "SELECT '$table', count(*) FROM $table"
 done
}

Exécuter le décompte avec la commande suivante.

$ paste -d ',' <(count_source) <(count_target) | column -s, -t
HR.COUNTRIES 35 public.countries 35
HR.DEPARTMENTS 27 public.departments 27
HR.EMPLOYEES 907 public.employees 907
HR.JOB_EVALUATIONS 45000 public.job_evaluations 45000
HR.JOB_HISTORY 28010 public.job_history 28010
HR.JOBS 29 public.jobs 29
HR.LOCATIONS 1523 public.locations 1523
HR.REGIONS 5 public.regions 5

Valider l’intégrité d’un échantillon de données.

Le deuxième contrôle vise à certifier que la donnée n’a pas subi de transformation au cours de la copie. Le changement d’encodage des chaînes de caractères ou la troncature non désirée d’une valeur sont des erreurs que nous souhaitons éviter à tout prix.

Créer les deux fonctions select_* suivantes. Elles établissent une connexion à leur base respective, exécutent la requête passée en paramètre et formatent le résultat au format CSV. Une attention particulière est nécessaire pour afficher correctement les données afin qu’elles aient un rendu équivalent entre les deux systèmes.

function select_source {
 test -z "$1" && return
 local SQLPLUS="sudo docker compose exec -T oracle sqlplus -S hr/phoenix@localhost/hr"
 n=$'\n'; cat <<- EOF | $SQLPLUS | grep -v '^$'
set newpage none head off feedback off
set markup csv on quote off
column salary format 999999.99
column commission_pct format 0.99
column score format 99.9
alter session set nls_date_format='YYYY-MM-DD';
alter session set nls_timestamp_format='YYYY-MM-DD HH24:MI:SS';
alter session set nls_timestamp_tz_format='YYYY-MM-DD HH24:MI:SSTZH';
$1;
EOF
}

function select_target {
 test -z "$1" && return
 local PSQL="sudo docker compose exec -T postgres psql -d hr -U postgres"
 $PSQL --csv --pset pager=off -tc "$1"
}

À présent, nous pouvons lancer la commande suivante pour comparer les résultats d’une requête qui parcourt une fraction de la table employees. Si la commande n’affiche aucun résultat, les données sont scrupuleusement identiques.

diff -u \
 <(select_source "SELECT * FROM hr.employees WHERE MOD(employee_id, 10) = 0 ORDER BY employee_id") \
 <(select_target "SELECT * FROM public.employees WHERE employee_id % 10 = 0 ORDER BY employee_id")

La comparaison des données CLOB est plus coûteuse en ressources. Pour la table job_evaluations, nous allons uniquement compter le nombre de caractères dans la colonne comments à l’aide des méthodes DBMS_LOB.GETLENGTH et char_length.

diff -u \
 <(select_source "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS';
 SELECT evaluation_id, employee_id, evaluator_id,
 evaluation_date, score, DBMS_LOB.GETLENGTH(comments)
 FROM hr.job_evaluations
 WHERE MOD(evaluation_id, 500) = 0
 ORDER BY evaluation_id") \
 <(select_target "SELECT evaluation_id, employee_id, evaluator_id,
 evaluation_date, score, char_length(comments)
 FROM public.job_evaluations
 WHERE evaluation_id % 500 = 0
 ORDER BY evaluation_id")

Tâches de maintenance

La bascule du modèle et des données vers PostgreSQL s’accompagne d’une série d’opérations de maintenance qui dépend de votre organisation. L’activation de les sondes de supervision et la planification des sauvegardes sont sans conteste les premières actions à entreprendre pour assurer le suivi et la sécurité de la plateforme.

Réaliser un VACUUM FREEZE pour sécuriser les données à terme.

Une opération préventive, appelée gel des lignes, est fortement recommandée à l’issue d’un chargement massif de lignes dans une base PostgreSQL.

Rappelons qu’un numéro de transaction est attaché à chaque nouvelle ligne dans une base, afin de garantir l’isolation des sessions entre elles. Or ces numéros de transaction sont encodés sur 32 bits et sont recyclés à terme. Il y a donc un risque de mélanger les opérations passées et celles à venir au moment du rebouclage (wraparound). Afin d’éviter ce phénomène, l’opération VACUUM FREEZE « gèle » les vieux enregistrements, afin que ceux-ci ne se retrouvent pas brusquement dans le futur.

Exécuter la commande suivante pour déclencher un gel préventif des table de la base hr. Il est possible de traiter plusieurs tables simultanément avec l’option --jobs.

$ sudo docker compose exec -ti postgres vacuumdb -U postgres --freeze --jobs=4 hr
vacuumdb: vacuuming database "hr"

EPUB/nav.xhtml

Découverte de PostgreSQL Migrator

		Découverte de PostgreSQL Migrator

		Introduction		Tour de table

		Déroulé de l’atelier

		Prérequis de l’atelier

		Présentation		Ambitions (1/3)

		Ambitions (2/3)

		Ambitions (3/3)

		Fonctionnalités (1/4)

		Fonctionnalités (2/4)

		Fonctionnalités (3/4)

		Fonctionnalités (4/4)

		Exercice #1

		Exercice #2

		Exercice #3

		Exercice #4

 		
 Title Page

EPUB/media/file1.png
@ PostgreSQL Migrator & O~ | Hunstar 9 | Yok 3| i

master v | pg_migrate ++ | Findfile : Project information
@ Modernize your database by moving
to PostgreSQL

Name Last commit Lastupdate

https://postgresql-migrator.rtfd.io
B3 circleci test: Cleanup MySQL asap 3 weeks ago

PostgresaL database Oracle 2 more

B3 config/mise/tasks test: get rid of freepdbl 5 months ago

————
B3 docs docs: Review JSON files page 1 week ago

o 1,995 Commits
By internal ui: Avoid wrapping in complexity repartition 5 days ago © 14 Branches
Bytest ui: Show components affected by one an... 5 days ago & 50 Tags
% airtoml Hot reload backend with air 1year ago & 1.4 GiB Project Storage

@ 43 Releases
& editorconfig Use 80 for the line length in editorconfig 5 months ago

EPUB/media/file2.png
ETIENNE BERSAC . PIERRE GIRAUD o PIERRE-LOUIS GONON

etienne.bersac@dalibo.com pierre.giraud@dalibo.com pierre-
00e00 0000 louis.gonon@dalibo.com
& MARION GIUSTI FLORENT JARDIN
marion.giusti@dalibo.com florent jardin@dalibo.com

000 0®o0

EPUB/media/file7.png
(Q Search Oracle catalog for.)

APLOYEES

@ FREE / Oracle / Tables / HRE

PostgreSQL Migrator E HR.EMPLOYEES

lils Overview Components Properties JSON Annotations @
Inspection Y Default v 4 8 Complexity
& Orade B8 1 Annotation
B EMPLOYEE_ID NUMBER(G, 0)
2 Roles Metrics
FIRST_NAME VARCHAR2(20
[Schemas 8 - (20) <> 12lines
123 Sequences B LAST_NAME VARCHAR2(25) & 128KB
907 rows
B Tables L] B EMAIL VARCHAR2(25)
Composed by
@® Views
B PHONE_NUMBER VARCHAR2(20) 4indexes
21 Indexes 11 columns
X B HIRE_DATE DATE
B, Triggers 3 foreignkeys
B Packages ™ B JOB_ID VARCHAR2(10) 3triggers
3 other components
{} Procedures B SALARY NUMBER(&, 2) g
References
F Functions
B COMMISSION_PCT NUMBER(2, 2) B9 HR.DEPARTMENTS
Conversion
) RessaL B MANAGER_ID NUMBER(6, ©) 3 HRJOBS
= EB HR.EMPLOYEES
B DEPARTMENT_ID NUMBER(4, ©) Converted to
or EMP_EMATL_UK UNTQUE (EMAIL) M hremployees

© About 1 columns
EMP FMP TD PK PRTMARY KEY (EMPLOYEE D)

EPUB/media/file9.png
L

PostgreSQL Migrator

lil, Overview
Inspection
S Oracle

Conversion
5= PostgresQL

Roles

oo

Schemas

123 Sequences

]

Indexes

a =

Triggers

© About

Tables []

(Q Search PostgresQL catalog for..

FREE / PostgreSQL

€ FREE

Components Annotations @

not implemented conversion: triggers

IS

4 tables
not implemented dump: checks 2
2tables

not implemented conversion: views
1 undefined

not implemented conversion: procedures
1 undefined

not implemented conversion: functions
1 undefined

not implemented conversion: packages
1 undefined

Default v

B @ @ @ |«

public.departments
1 indexes - 4 columns - 2 foreignkeys

public.employees
4indexes - 11 columns - 3 foreignkeys

public.job_evaluations
2 indexes - 6 columns - 2 foreignkeys

public.locations
3 indexes - 6 columns - 1 foreignkeys

i 64KB 27 rows
4 1288 907 rows
4 1.2GB
i 128K8 5K rows

EPUB/media/file5.png
L

PostgreSQL Migrator FREE

on, Jar

lils Overview
Inspection

S Oracle s PostgreSQL
2 e

Conversion

32 PostgreSQL G 10 Annotations

Instance Metrics

& L4 ®

1.2GB 105.8 214 lines 30 lines

Components Repartition M

complex objects

HR . EMP_MGMT
2 2Roles B -

4]
< 73 lines
@ 3 4 Sequences
@ B 8 Tables
@ [2Packages

@ {} 2Procedures

© # 2Functions
@20ther

© About

EPUB/media/file0.png
L

PostgreSQL Migrator

Modernize your database by moving
to PostgreSQL.

EPUB/media/file8.png
(Q Search PostgresQL catalog for.)

@ FREE / PostgreSQL / Tables / hremployees

PostgreSQL Migrator E hr. employees

lils Overview Components Properties JSON Annotations @
Inspection Y Default v 4 4.6 Complexity
S Oracle B 2 Annotations
B employee_id integer
Conversion Metrics
32 PostgreSQL first_name varchar(20)
ostgresQl 8 & 128K
. Roles B last_name varchar(25) 907 rows
3 Schemas Composed b
B email varchar(2s) poseaty
123 Sequences 4indexes
B phone_number varchar(20) 11 col
EB Tables [] columns
3 foreignkeys
8] Indexes B hire_date timestamp gnkey
4 other components
B, Triggers B job_id varchar(10) References
B salary numeric(s, 2) EB hrdepartments
EB hrjobs
B commission_pct numeric(2, 2)) s
B manager_id integer Converted from
. . BB HREMPLOYEES
B department_id smallint
or €mp_email_uk UNTQUE (email)

© About 1 columns
emn emn id ok PRTMARY KEY (emnlovee id)

EPUB/media/file6.png
(Q Search Oracle catalog for..)

ﬁ FREE / Oracle

PostgreSQL Migrator g FREE

[, @i Components Annotations @
Inspection Y 4 score v 4 105.8 Complexity
Oracl B8 13 Annotations
& @ [HR.ENP_MGNT
2 Roles 4 procedures - 2 functions © 73lines oo
[@ HR.EMP_ACTIONS
3 Schemas 2 procedures - 2 functions <> 38lines <> 217 lines
123 Sequences & HR.EMP_DETAILS_VIEW & 1268
16 columns <> 30 lines
Composed b
BB Tables W o HREWPLOYEES poseaty
) 4indexes - 11 columns - 3 foreignkeys - 3 triggers & 128KB <> 12lines 907 rows 8 tables
® Views
[HR.JOB_EVALUATIONS 1 view

21 Indexes 2 indexes - 6 columns - 2 foreignkeys - 1 triggers & 1.2GB <> 5lines 45K rows

2 packages
&, Triggers m HR.LOCATIONS
w1199 3indexes - 6 columns - 1 foreignkeys - 1 triggers & 128KB <> Slines 2 procedures
[Packages [] HR.DEPARTMENTS 2 functions

1 indexes - 4 columns - 2 foreignkeys - 1 triggers & 64KB <> 5lines

7 other components
{} Procedures P!

HR.ADD_JOB_HISTORY (job_history.employee_id%type, job_history.start_date%type, job_h..
T Siramerers 13lines Convertedto
£ Functions F <
£ HR.EMP_SAL_RANKING(NUMBER) NUMBER < PostgresQL
CmEEEn 1 parameters < 17 lines
= PostgresQL f HR.LAST_FIRST_NAME (NUMBER) VARCHAR2
1 parameters <> 10 lines

{} HR.SECURE_DML
<> 9lines

© About @m HR.JOB_HISTORY
3 indexes - 5 columns - 3 foreiankevs & 2MB

28K rows.

