
Save your data with pgBackRest

12 July 2018

Stefan Fercot

true

Save your data with pgBackRest

TITRE : Save your data with pgBackRest
SOUS-TITRE :

DATE: 12 July 2018

WHOAM I?

• Stefan Fercot
• aka. pgstef
• PostgreSQL user since 2010
• involved in the community since 2016
• @dalibo since 2017

true
5

12 July 2018

DALIBO

• Services

Support Training Advice

• Based in France
• Contributing to PostgreSQL community
• We’re hiring!

6

INTRODUCTION

Ever heard of Point-in-time recovery? pgBackRest is an awesome tool to handle backups,
restores and even helps you build streaming replication !

This talk will introduce the tool, its basic features and how to use it.

WRITE AHEAD LOG (WAL)

• transactions written sequentially
– considered committed when flushed to disk

• WAL replay after a crash
– make the database consistent

WAL is the mechanism that PostgreSQL uses to ensure that no committed changes are
lost. Transactions are written sequentially to the WAL and a transaction is considered to
be committed when those writes are flushed to disk. Afterwards, a background process
writes the changes into the main database cluster files (also known as the heap). In the
event of a crash, the WAL is replayed to make the database consistent.

POINT-IN-TIME RECOVERY (PITR)

• combine
– file-system-level backup
– continuous archiving of the WAL files

• restore the file-system-level backup and replay the archived WAL files
• not mandatory to replay the WAL entries all the way to the end

https://www.postgresql.org/docs/current/static/continuous-archiving.html

HOWTODO IT? (1)

• postgresql.conf
– archive_mode
– archive_command
– archive_timeout

true
7

12 July 2018

HOWTODO IT? (2)

• pg_start_backup()
• file-system-level backup : tar, rsync,…
• pg_stop_backup()

HOWTODO IT? (3)

• so many ways to get that wrong
– what about backup retention?
– …

8

WHAT IS PGBACKREST?

• aims to be a simple, reliable backup and restore system
• developed by David Steele & Stephen Frost (CrunchyData)
• Perl & C
• MIT license

MAIN FEATURES

• custom protocol
– local or remote operation (via SSH)

• multi-process
• full/differential/incremental backup
• backup rotation and archive expiration
• parallel, asynchronous WAL push and get
• Amazon S3 support
• encryption
• …

INSTALLATION

• Use the PGDG repository, Luke!
– yum / apt-get install pgbackrest
– 1 package with some (~ 40) dependencies

CONFIGURATION

• /etc/pgbackrest.conf, example :

[global]
repo1-path=/var/lib/pgsql/10/backups
log-level-console=info

[my_stanza]
pg1-path=/var/lib/pgsql/10/data

true
9

12 July 2018

• main configuration in the [global] part
• each PostgreSQL cluster to backup has its own configuration, called stanza

A stanza is the configuration for a PostgreSQL database cluster that defines where it is
located, how it will be backed up, archiving options, etc. Most db servers will only have
one PostgreSQL database cluster and therefore one stanza, whereas backup servers will
have a stanza for every database cluster that needs to be backed up.

It is tempting to name the stanza after the primary cluster but a better name describes the
databases contained in the cluster. Because the stanza name will be used for the primary
and all replicas it is more appropriate to choose a name that describes the actual function
of the cluster, such as app or dw, rather than the local cluster name, such as main or prod.

GLOBAL SECTION - SOME EXAMPLES

• process-max: max processes to use for compress/transfer
• repo1-path: path where backups and archive are stored
• repo1-cipher-pass: passphrase used to encrypt/decrypt files of the repository
• repo1-retention-full: number of full backups to retain
• repo1-retention-diff: number of differential backups to retain
• repo1-host: repository host when operating remotely via SSH
• repo1-host-user: repository host user when repo1-host is set
• …

To set encryption :

openssl rand -base64 48

repo1-cipher-pass=xxx
repo1-cipher-type=aes-256-cbc

STANZA SECTION

• pg1-path: PostgreSQL data directory
• pg1-port
• any global configuration can be overridden
• …

10

POSTGRESQL CONFIGURATION

• archive_mode = on
• wal_level = replica
• archive_command = 'pgbackrest --stanza=my_stanza archive-push %p'

INITIALIZE THE STANZA

• create the stanza

sudo -u postgres pgbackrest --stanza=my_stanza stanza-create

• check the configuration and if archiving is working

sudo -u postgres pgbackrest --stanza=my_stanza check

The stanza-create command must be run on the host where the repository is located to
initialize the stanza.

The check command validates that pgBackRest and the archive_command setting are
configured correctly for archiving and backups. It detects misconfigurations, particularly
in archiving, that result in incomplete backups because required WAL segments did not
reach the archive.

Note that pg_create_restore_point(‘pgBackRest ArchiveCheck’) and pg_switch_xlog()/pg_switch_wal()
are called to force PostgreSQL to archive a WAL segment.

PERFORM A BACKUP

sudo -u postgres pgbackrest --stanza=my_stanza --type=full backup

• supported types: incr, diff, full

Example:

sudo -u postgres pgbackrest --stanza=my_stanza --type=full --no-log-timestamp backup |grep P00
P00 INFO: backup command begin 2.03: --log-level-console=info
--no-log-timestamp --pg1-path=/var/lib/pgsql/10/data
--repo1-path=/var/lib/pgsql/10/backups --stanza=my_stanza --type=full
P00 INFO: execute non-exclusive pg_start_backup() with label
"pgBackRest backup started at 2018-06-20 18:05:24": backup begins after the next regular checkpoint completes

true
11

12 July 2018

P00 INFO: backup start archive = 000000010000000000000003, lsn = 0/3000060
P00 INFO: full backup size = 23.2MB
P00 INFO: execute non-exclusive pg_stop_backup() and wait for all WAL segments to archive
P00 INFO: backup stop archive = 000000010000000000000003, lsn = 0/3000130
P00 INFO: new backup label = 20180620-180524F
P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin
P00 INFO: option 'repo1-retention-archive' is not set - archive logs will not be expired
P00 INFO: expire command end: completed successfully

BACKUP INFORMATION

sudo -u postgres pgbackrest --stanza=my_stanza info
stanza: my_stanza

status: ok

db (current)
wal archive min/max (10-1):
000000010000000000000001 / 000000010000000000000003

full backup: 20180620-180524F
timestamp start/stop: 2018-06-20 18:05:24 / 2018-06-20 18:05:39
wal start/stop: 000000010000000000000003 / 000000010000000000000003
database size: 23.2MB, backup size: 23.2MB
repository size: 2.7MB, repository backup size: 2.7MB

RESTORE A BACKUP

sudo -u postgres pgbackrest --stanza=ma_stanza restore

• options
– --delta
– --target
– …

• --delta : by default the PostgreSQL data and tablespace directories are expected
to be present but empty. This option performs a delta restore using checksums

12

• --target : defines the recovery target when –type is name, xid, or time.

true
13

12 July 2018

DEMO - POINT-IN-TIME RECOVERY

STEP 1: BACKUP

sudo -u postgres pgbackrest --stanza=my_stanza --type=full backup
P00 INFO: backup command begin 2.03:
--pg1-path=/var/lib/pgsql/10/data --repo1-path=/var/lib/pgsql/10/backups
--stanza=my_stanza --type=full
P00 INFO: execute non-exclusive pg_start_backup()
with label "pgBackRest backup started at 2018-06-28 16:53:20":
backup begins after the next regular checkpoint completes
P00 INFO: backup start archive = 000000020000000000000019, lsn = 0/19000060
P00 INFO: full backup size = 23.2MB
P00 INFO: execute non-exclusive pg_stop_backup() and
wait for all WAL segments to archive
P00 INFO: backup stop archive = 000000020000000000000019, lsn = 0/19000130
P00 INFO: new backup label = 20180628-165320F
P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin
P00 INFO: expire command end: completed successfully

STEP 2: CREATE IMPORTANT DATA

sudo -iu postgres psql -c " \
begin; \
create table important_table (message text); \
insert into important_table values ('Important Data'); \
commit; \
select * from important_table;"

message

Important Data
(1 row)

14

STEP 3: GET CURRENT TIME

sudo -iu postgres psql -Atc "select current_timestamp"
2018-06-28 16:54:22.221035+02

STEP 4: OOOPS…

sudo -iu postgres psql -c " \
begin; \
drop table important_table; \
commit; \
select * from important_table;"
ERROR: relation "important_table" does not exist
LINE 1: ...drop table important_table; commit; select * from important_...

^

STEP 5: STOP POSTGRESQL

sudo -iu postgres psql -c "select pg_switch_wal()"
systemctl stop postgresql-10.service

STEP 6: RESTORE

sudo -u postgres pgbackrest --stanza=my_stanza --delta
--type=time --target="2018-06-28 16:54:22.221035+02" --target-action=promote
restore
P00 INFO: restore command begin 2.03: --delta
--pg1-path=/var/lib/pgsql/10/data --repo1-path=/var/lib/pgsql/10/backups
--stanza=my_stanza --target="2018-06-28 16:54:22.221035+02"
--target-action=promote --type=time
P00 INFO: restore backup set 20180628-165320F
P00 INFO: remove invalid files/paths/links from /var/lib/pgsql/10/data
P00 INFO: cleanup removed 22 files
P00 INFO: write /var/lib/pgsql/10/data/recovery.conf

true
15

12 July 2018

P00 INFO: restore global/pg_control
(performed last to ensure aborted restores cannot be started)
P00 INFO: restore command end: completed successfully

STEP 7: CHECK RECOVERY.CONF

cat /var/lib/pgsql/10/data/recovery.conf
restore_command = 'pgbackrest --stanza=my_stanza archive-get %f "%p"'
recovery_target_time = '2018-06-28 16:54:22.221035+02'
recovery_target_action = 'promote'

STEP 8: START POSTGRESQL

systemctl start postgresql-10.service
cat /var/lib/pgsql/10/data/log/*
LOG: recovery stopping before commit of transaction 561,
time 2018-06-28 16:54:59.481247+02
LOG: redo done at 0/1A01E590
LOG: last completed transaction was at log time 2018-06-28 16:54:13.370025+02

STEP 9: CHECK THE DATA

sudo -iu postgres psql -c "select * from important_table"
message

Important Data
(1 row)

16

STREAMING REPLICATION

• /etc/pgbackrest.conf
– recovery-option=primary_conninfo=db.mydomain.com
– recovery-option=standby_mode=on
– …

https://pgbackrest.org/user-guide.html#replication/streaming

See http://www.postgresql.org/docs/X.X/static/recovery-config.html for details on
recovery.conf options (replace X.X with your PostgreSQL version). This option can be
used multiple times.

true
17

12 July 2018

CONCLUSION

• test it,
• use it!

18

WHERE

• official website: https://pgbackrest.org
• code: https://github.com/pgbackrest/pgbackrest
• rpm and deb: in the PGDG repositories!
• user guide: https://pgbackrest.org/user-guide.html
• support: https://github.com/pgbackrest/pgbackrest/issues

true
19

https://pgbackrest.org
https://github.com/pgbackrest/pgbackrest
https://pgbackrest.org/user-guide.html
https://github.com/pgbackrest/pgbackrest/issues

12 July 2018

THANK YOU FOR YOUR ATTENTION!

20

	Who Am I?
	Dalibo
	Introduction
	Write Ahead Log (WAL)
	Point-In-Time Recovery (PITR)
	How To Do It? (1)
	How To Do It? (2)
	How To Do It? (3)

	What Is pgBackRest?
	Main Features
	Installation
	Configuration
	Global Section - some examples
	Stanza Section
	PostgreSQL Configuration
	Initialize The Stanza
	Perform a Backup
	Backup Information
	Restore a Backup

	Demo - Point-in-Time Recovery
	Step 1: Backup
	Step 2: Create Important Data
	Step 3: Get Current Time
	Step 4: Ooops…
	Step 5: Stop PostgreSQL
	Step 6: Restore
	Step 7: Check recovery.conf
	Step 8: Start PostgreSQL
	Step 9: Check the data

	Streaming Replication
	Conclusion
	Where
	Thank you for your attention!

