
PAF
...Another brick in the HA wall

WHO AM I ?
Jehan-Guillaume de Rorthais
aka. ioguix
using PostgreSQL since 2007
involved in PostgreSQL community since 2008
@dalibo since 2009

High Availability

MENU
Quick intro about HA
Quick intro about Pacemaker
Why PAF ?
PAF abilities

HA IN SHORT
Part of the Business Continuity Planning
In short: double everything
should it include automatic failover ?

AUTO FAILOVER: TECH
Hard to achieve:

how to detect a real failure?
why the master doesn't answer?
is it under high load? switched off?
is it a network issue? hick up?
how to avoid split brain?

BUILDING AUTO FAILOVER
many issues to understand
solutions: quorum, fencing, watchdog, ...
complex setup
complex maintenances
document, document, document
test, test, test

If you don't have time, don't do auto failover (almost).

QUORUM
resources run in the cluster partition hosting the greater
number of nodes
useful on network split
...or when you require a minimal number of node alive
based on vote

 FENCING
ability to poweroff or reboot any node of your cluster
the definitive solution to know the real state of an
unresponsive node
hardware fencing (smart PDU, UPS, IPMI)
IO fencing (SAN, network)
virtual fencing (libvirt, xen, vbox, ...)
so�ware: do not rely on it (eg. ssh)
meatware

Really, do it. Do not think you are safe without it.

WATCHDOG
feed your local dog or it will kill your node
either hardware or so�ware (cf. so�dog)
self-fencing (suicide) on purpose
auto-self-fencing when node is unresponsive

 Pacemaker
Will assimilate your resource...

Resistance is futile.
(T.N.: 'service' eq 'resource')

PACEMAKER IN SHORT
is a "Cluster Resource Manager"
support fencing, quorum and watchdog
multi-resource, dependencies, resources order,
constraints, rules, etc
Resource Agents are the glue between the CRM and the
services
RA can be stateless or multi-state
RA API: script OCF, upstart, systemd, LSB

PACEMAKER ARCHITECTURE

CRM MECHANISM
kind of automate
4 states: stopped, started, slave or master
the CRM compute transitions between two states
only ONE CRMd is handling the whole cluster: the DC
minimal actions API (eg. systemd): start, stop,
monitor(status)
extended actions API (OCF): start, stop, promote, demote,
monitor, notify
for a multi-state resource:

stopped slave master
start promote

demotestop

NOTIFY ACTION
only available with OCF resource agents
triggered before and a�er actions
triggered on ALL node
action wait for all pre-notify feedback to run
next actions wait for all post-notify feedback to run
allows the resource agent to run specific service code

(pre-start) (post-start)

stopped slave master

start

stop demote

notify notify

notify notifynotify

promotenotify notify
(pre-promote) (post-promote)

(pre-demote)(post-demote)(pre-stop)

notify
(post-stop)

NOTIFY DATAS
Datas available to the RA during the notify actions:

active => [],
inactive => [
 { rsc => 'pgsqld:2', uname => 'srv1' },
 { rsc => 'pgsqld:0', uname => 'srv2' },
 { rsc => 'pgsqld:1', uname => 'srv3' }
],
master => [],
slave => [],
promote => [{ rsc => 'pgsqld:0', uname => 'srv1' }],
demote => [],
start => [
 { rsc => 'pgsqld:0', uname => 'srv1' },
 { rsc => 'pgsqld:1', uname => 'srv3' },
 { rsc => 'pgsqld:2', uname => 'srv2' }
],
stop => [],
type => 'pre'

MASTER SCORE
set preference on slave to promote
highest score is promoted to master
a slave must have a positive score to be promoted
no promotion if no master score anywhere
set by the resource agent and/or the admin

 HISTORY
pgconf.eu 2012 talk on Pacemaker/pgsql
had a hard time to build a PoC and document
discussion with Magnus about demote
(other small projects around this before)
PAF started in 2015
lots of questions to Pacemaker's devs
authors: Maël Rimbault, Me
some contributors and feedbacks (Thanks!)

 WHY ?
The existing RA:

achieve multiple architectures (stateless and multistate)
implementation details to understand (lock file)
only failover (no role swapping or recovery)
hard and heavy to manage (start/stop order, etc)
hard to setup
fake Pacemaker state because of demote, mess in the
code
old code...

GOALS
keep Pacemaker: it does most of the job for us
focus on our expertise: PostgreSQL
stick to the OCF API and Pacemaker behavior, embrace
them
keep a SIMPLE RA setup
support ONLY multi-state
support ONLY Streaming Replication
REQUIRE Streaming Replication and Hot Standby
ease of administration
keep the code clean and documented
support PostgreSQL 9.3 and a�er

 VERSIONS
Two versions to catch them (almost) ALL!

1.x: up to EL6 and Debian 7
...or Pacemaker 1.12/corosync 1.x
2.x: from EL7 and Debian 8
... or Pacemaker 1.13/Corosync 2.x

GUTS
written in perl
demote = stop + start (= slave)
slave election during failover
detect various kind of transitions thanks to notify (recover
and move)

 PAF CONFIGURATION
system_user
bindir
datadir (oops, 1.1 only)
pgdata
pghost
pgport
recovery_template
start_opts

OLD CONFIGURATION
Compare with historical pgsql RA:

pgctl
start_opt
ctl_opt
psql
pgdata
pgdba
pghost
pgport
pglibs
monitor_user

OLD CONFIGURATION (2)
Encore?

monitor_password
monitor_sql
config
pgdb
logfile
socketdir
stop_escalate
rep_mode
node_list
restore_command

OLD CONFIGURATION (3)
Not done yet...

archive_cleanup_command
recovery_end_command
master_ip
repuser
primary_conninfo_opt
restart_on_promote
replication_slot_name
tmpdir
xlog_check_count
crm_attr_timeout

OLD CONFIGURATION (4)
Promise, the last ones:

stop_escalate_in_slave
check_wal_receiver

Features
The following demos considers:

one master & two slaves
a secondary IP address following the master role:
192.168.122.50

a really simple recovery.conf template file:

a monitor action every 15s

standby_mode = on
primary_conninfo = 'host=192.168.122.50 application_name=$(hostname -s)'
recovery_target_timeline = 'latest'

 STANDBY RECOVER
Transition: stop -> start

stop notify

(pre-stop)

(post-stop)

(pre-start)(post-start)

pg_ctl start

slave recover
yes no

notify
status error

start notifynotify

recovery

Slave recover demo:

0:00 / 1:28

MASTER RECOVER
Transition: demote -> stop -> start -> promote

(post-demote) (pre-stop)(post-stop)

(post-start) (pre-start)

stop notifynotify

startnotify notify

demote notify

(post-promote) (pre-promote)

promotenotify notify

status error

(pre-demote)

pg_ctl start

master recover
yes no

notify

recovery

Master recover demo:

0:00 / 1:34

FAILOVER & ELECTION
Master

S1

S2

error!

Attrd

s1: master_score=1000
s2: master_score=990

s1: master_score=1

s2: master_score=1000
s1: last_lsn=1/1234567

s2: last_lsn=1/1AE53D0

s1: last_lsn=1/1234567

s2: last_lsn=1/1AE53D0

s1: master_score=1000

s2: master_score=990

s1: master_score=1

s2: master_score=1000
s1: last_lsn=1/1234567

s2: last_lsn=1/1AE53D0

promotepre-promote

monitor

pre-promote
promote

post-promote

Failover demo:

0:00 / 0:46

 YOU THINK IT'S OVER ?

CONTROLLED SWITCHOVER
only with 2.0
the designated standby checks itself
it cancel the promotion if the previous master will not be
able to catch up with it.

Controlled switchover demo:

0:00 / 1:57

Whishlist
recovery.conf as GUC
live demote
pgbench handling of errors

 Where?
site officiel:
code:
packages:
support:
mailing list: pgsql-general

http://dalibo.github.io/PAF/
https://github.com/dalibo/PAF

https://github.com/dalibo/PAF/releases
https://github.com/dalibo/PAF/issues

http://dalibo.github.io/PAF/
https://github.com/dalibo/PAF
https://github.com/dalibo/PAF/releases
https://github.com/dalibo/PAF/issues

