PAF

...Another brick in the HA wall

W DALIBO

L'expertise PostgreSQL

WHO AM | ?

Jehan-Guillaume de Rorthais

aka. ioguix

using PostgreSQL since 2007

involved in PostgreSQL community since 2008
@dalibo since 2009

High Availability

¥ tl*r‘!-.._t. 1

W DALIBO

L'expertise PostgreSQL

MENU

e Quick intro about HA

e Quick intro about Pacemaker
e Why PAF ?

o PAF abilities

HA IN SHORT

e Part of the Business Continuity Planning
e |n short: double everything
e should it include automatic failover ?

AUTO FAILOVER: TECH

Hard to achieve:

how to detect a real failure?

why the master doesn't answer?

is it under high load? switched off?
Is it a network issue? hick up?

how to avoid split brain?

BUILDING AUTO FAILOVER

e many issues to understand

e solutions: quorum, fencing, watchdog, ...
e complex setup

e complex maintenances

e document, document, document

o {est, test, test

If you don't have time, don't do auto failover (almost).

QUORUM

resources run in the cluster partition hosting the greater
number of nodes

useful on network split

...or when you require a minimal number of node alive
based on vote

FENCING

e ability to poweroff or reboot any node of your cluster

e the definitive solution to know the real state of an
unresponsive node

e hardware fencing (smart PDU, UPS, IPMI)

e |0 fencing (SAN, network)

e virtual fencing (libvirt, xen, vbox, ...)

e software: do not rely on it (eg. ssh)

e meatware

Really, do it. Do not think you are safe without it.

WATCHDOG

feed your local dog or it will kill your node
either hardware or software (cf. softdog)
self-fencing (suicide) on purpose
auto-self-fencing when node is unresponsive

Pacemaker

Will assimilate your resource...

Resistance is futile.

(T.N.: 'service' eq 'resource’)

W DALIBO

L'expertise PostgreSQL

PACEMAKER IN SHORT

IS a "Cluster Resource Manager"

support fencing, quorum and watchdog
multi-resource, dependencies, resources order,
constraints, rules, etc

Resource Agents are the glue between the CRM and the
services

RA can be stateless or multi-state

RA API: script OCF, upstart, systemd, LSB

PACEMAKER ARCHITECTURE

Active / Passive

Services

Cluster
Software

Hardware

W DALIBO

L'expertise PostgreSQL

CRM MECHANISM

e kind of automate

e 4 states: stopped, started, slave or master

e the CRM compute transitions between two states

e only ONE CRMd is handling the whole cluster: the DC

e minimal actions API (eg. systemd): start, stop,
monitor(status)

e extended actions APl (OCF): start, stop, promote, demote,
monitor, notify

e for a multi-state resource:

master

NOTIFY ACTION

e only available with OCF resource agents

e triggered before and after actions

e triggered on ALL node

e action wait for all pre-notify feedback to run

e next actions wait for all post-notify feedback to run

e allows the resource agent to run specific service code

NOTIFY DATAS

Datas available to the RA during the notify actions:

active => [],
inactive => [

master =>
slave =>
promote =>
demote =>
start =>

MASTER SCORE

set preference on slave to promote

highest score is promoted to master

a slave must have a positive score to be promoted
no promotion if no master score anywhere

set by the resource agent and/or the admin

Postg reSQ

Automatic
Faillover

W DALIBO
L'expertise PostgreSQL

HISTORY

e pgconf.eu 2012 talk on Pacemaker/pgsql

e had a hard time to build a PoC and document
e discussion with Magnus about demote

e (other small projects around this before)

e PAF started in 2015

e |ots of questions to Pacemaker's devs

e authors: Maél Rimbault, Me

e some contributors and feedbacks (Thanks!)

WHY ?
The existing RA:

e achieve multiple architectures (stateless and multistate)

e implementation details to understand (lock file)

e only failover (no role swapping or recovery)

e hard and heavy to manage (start/stop order, etc)

e hard to setup

o fake Pacemaker state because of demote, mess in the
code

e old code...

GOALS

e keep Pacemaker: it does most of the job for us

e focus on our expertise: PostgreSQL

o stick to the OCF APl and Pacemaker behavior, embrace
them

e keep a SIMPLE RA setup

e support ONLY multi-state

e support ONLY Streaming Replication

e REQUIRE Streaming Replication and Hot Standby

e ecase of administration

e keep the code clean and documented

e support PostgreSQL 9.3 and after

VERSIONS

Two versions to catch them (almost) ALL!

e 1.x:upto EL6 and Debian7

e ...or Pacemaker 1.12/corosync 1.x
e 2.x:from EL7 and Debian 8

e ...or Pacemaker 1.13/Corosync 2.x

GUTS

e written in perl

e demote = stop + start (= slave)

e slave election during failover

e detect various kind of transitions thanks to notify (recover
and move)

PAF CONFIGURATION

e system_user

e bindir

e datadir (oops, 1.1 only)
e pgdata

e pghost

* pgport

e recovery_template

e start_opts

OLD CONFIGURATION
Compare with historical RA:

e pgctl
e start_opt

e ctl_opt

e psql

e pgdata

e pgdba

e pghost

* pgport

e pglibs

e monitor_user

OLD CONFIGURATION (2)

Encore?

e monitor_password
e monitor_sql

e config

* pgdb

e |ogfile

e socketdir

e stop_escalate

* rep_mode

e node_list

e restore_command

OLD CONFIGURATION (3)

Not done yet...

e archive_cleanup_command
e recovery_end_command

e master_ip

* repuser

e primary_conninfo_opt

e restart_on_promote

e replication_slot_name

e tmpdir

e xlog_check_count

e crm_attr_timeout

OLD CONFIGURATION (4)

Promise, the last ones:

e stop_escalate_in_slave
e check_wal_receiver

The following demos considers:

e onhe master & two slaves

e asecondary IP address following the master role:
192.168.122.50

e areally simple recovery.conf template file:

standby_mode = on

primary_conninfo = 'host=192.168.122.50 application_name=$(hostname -s)'

recovery_target_timeline = 'latest'’

e a monitor action every 15s

STANDBY RECOVER
Transition: ->
O

|

W DALIBO

L'expertise PostgreSQL

Slave recover demo:

root@srvl:~

root@srvl:~#

root@srv3:-

Every 1,0s: ps f -o cmd= -u postgres Fri Sep 9 16:27:00 2016
/usr/pgsql-9.4/bin/postgres -D /var/lib/pgsql/9.4/data

_ postgres: logger process

_ postgres: startup process recovering 000000180000000000000019

_ postgres: checkpointer process

_ postgres: writer process

_ postgres: stats collector process

_ postgres: wal receiver process streaming 0/19FBB3F0

p 0:00 /1:28

root@srv2:~

Online: [srvl srv2 srv3]

Full list of resources:

fence_vm_srvl
fence_vm_srv2
fence_vm_srv3

(
(

Master/Slave Set: pgsql-ha [pgsqld]

Masters:
Slaves:

Node Attributes:

* Node srvl:

[srvl]
[srv2 srv3]
pgsql-master-ip (ocf::heartbeat:IPaddr2):

+ master-pgsqld

* Node srv2:

+ master-pgsqld

* Node srv3:

+ master-pgsqld

Migration Summary:

* Node srv2:
* Node srv3:
* Node srvl:

stonith:fence_virsh):
stonith:fence_virsh):
(stonith: fence_virsh):

Started srv2
Started srvl
Started srvl

Started srvl

1001

1000

1 990

100 W LR £

MASTER RECOVER
CLTITY cenote B stop B otort B pronote.

O

|
O

W DALIBO

L'expertise PostgreSQL

root@srvl:~

root@srvl:~# |

Master recover demo:

root@srv3:-

Every 1,0s: ps f -0 cmd= -u postgres

/usr/pgsql-9

logger process
startup process
checkpointer process
writer process

stats collector process

wal receiver process

p 0:00 /1:34

Fri Sep 9 17:46:41 2016

.4/bin/postgres -D /var/lib/pgsql/9.4/data
_ postgres:
_ postgres:
_ postgres:
_ postgres:
_ postgres:
_ postgres:

recovering 0000001A000000000000001D

streaming 0/1D1FAEBS

root@srv2:~

Online: [srvl srv2 srv3]

Full list of resources:

fence_vm_srvl
fence_vm_srv2
fence_vm_srv3

(
(

Master/Slave Set: pgsql-ha [pgsqld]

Masters:
Slaves:

[srvl]
[srv2 srv3]

stonith:fence_virsh):
stonith:fence_virsh):
(stonith:fence_virsh):

Started srv2
Started srvl
Started srvl

pgsql-master-ip (ocf::heartbeat:IPaddr2):

Node Attributes:

* Node srvl:

+ master-pgsqld

* Node srv2:

+ master-pgsqld

* Node srv3:

+ master-pgsqld

Migration Summary:

* Node srv2:
* Node srv3:
* Node srvl:

1001

1000

1 990

Started srvl

L YT [

FAILOVER & ELECTION

monitor

N N & |

[.

1V AN N I AN A

sl1: master_score=1000 sl: master_score=1 sl1: master_score=1

s1: master_score=1000 sl: last_Isn=1/1234567 |si: last_Isn=1/1234567 |[s1: last_Isn=1/1234567
s2: master_score=990 s2: master_score=990 s2: master_score=1000 s2: master_score=1000

s2: last_Isn=1/1AE53DO0O |s2: last_Isn=1/1AE53D0 |[s2: last_Isn=1/1AE53DO

Failover demo:

root@srvl:~ root@srv2:~

root@srvl:~# echo c > /proc/sysﬂ] Online: [srvl srv2 srv3 |
Full list of resources:

fence_vm_srvl (stonith:fence_virsh): Started srv2
fence_vm_srv2 (stonith:fence_virsh): Started srv3
fence_vm_srv3 (stonith:fence_virsh): Started srv2
Master/Slave Set: pgsql-ha [pgsqld]

Masters: [srvl]

Slaves: [srv2 srv3]

pgsql-master-ip (ocf::heartbeat:IPaddr2): Started srvl
Node Attributes:
* Node srvl:
+ master-pgsqld : 1001
* Node srv2:
+ master-pgsqld : 1000
* Node srv3:
+ master-pgsqld 1 990
root@sruz:- Migration Summary:
root@srv2:~# tail -f /var/log/cluster/corosync.log|grep -o "DEBUG: pgsql_promote.*" * Node srv2:
* Node srv3:
* Node srvl:

» ¢o00/046 @n—auu-u—neonion-no-o-o o —

115 W LR

YOU THINK IT'S OVER ?

W DALIBO

L'expertise PostgreSQL

CONTROLLED SWITCHOVER

e only with 2.0

e the designated standby checks itself

e it cancel the promotion if the previous master will not be
able to catch up with it.

W DALIBO

L'expertise PostgreSQL

root@srvl:~

Controlled switchover demo:

root@srvl:~# |

root@srv3:-

Every 1,0s: ps f -o cmd= -u postgres

/usr/pgsql-9

Fri Sep 9 18:28:45 2016

.4/bin/postgres -D /var/lib/pgsql/9.4/data
_ postgres:
_ postgres:
_ postgres:
_ postgres:
_ postgres:
_ postgres:

logger process

startup process recovering 0000002C0000000000000029
checkpointer process

writer process

stats collector process

wal receiver process streaming 0/29088FB0O

p 0:00 / 1:57

root@srv2:~

Online: [srvl srv2 srv3]

Full list of resources:

fence_vm_srvl
fence_vm_srv2
fence_vm_srv3

(
(

Master/Slave Set: pgsql-ha [pgsqld]

Masters:
Slaves:

Node Attributes:

* Node srvl:

[srvl]
[srv2 srv3]
pgsql-master-ip (ocf::heartbeat:IPaddr2):

+ master-pgsqld

* Node srv2:

+ master-pgsqld

* Node srv3:

+ master-pgsqld

Migration Summary:

* Node srv2:
* Node srv3:
* Node srvl:

stonith:fence_virsh):
stonith:fence_virsh):
(stonith:fence_virsh):

Started srv2
Started srvl
Started srvl

Started srvl

1001

1000

1 990

a5 Ty GBI

Whishlist

e recovery.confas GUC
e live demote
e pgbench handling of errors

W DALIBO

L'expertise PostgreSQL

Where?

e site officiel: http://dalibo.github.io/PAF/

e code: https://github.com/dalibo/PAF

e packages: https://github.com/dalibo/PAF/releases
e support: https://github.com/dalibo/PAF/issues

e mailing list: pgsql-general

W DALIBO

L'expertise PostgreSQL

http://dalibo.github.io/PAF/
https://github.com/dalibo/PAF
https://github.com/dalibo/PAF/releases
https://github.com/dalibo/PAF/issues

"l-'||f

¥

BLZVASKIMI [!IIESTIIINS

