
Nordic PGDay

Point-in-time Recovery, target 2020

24March 2020

Stefan Fercot

Point-in-time Recovery, target 2020

Nordic PGDay

TITRE : Point-in-time Recovery, target 2020
SOUS-TITRE : Nordic PGDay

DATE: 24 March 2020

WHOAM I?
• Stefan Fercot
• aka. pgstef
• https://pgstef.github.io
• PostgreSQL user since 2010
• pgBackRest fan
• @dalibo since 2017

www.dalibo.com
5

Point-in-time Recovery, target 2020

DALIBO
• Services

Support Training Advice

• Based in France
• Contributing to PostgreSQL community

6

INTRODUCTION
• What is WAL?
• Point-In-Time Recovery (PITR)

– WAL archives
– File-system-level backup
– Restore

• PITR Tools

Your pg_dump takes forever? You want to save your data more frequently? Have you
ever heard of Point-in-time recovery?

In his talk, we’ll introduce what is called Point-in-time Recovery (aka “live backup”).

We’ll see how to achieve it step-by-step if you want to do manually: * archive_command
/ pg_recievewal; * pg_basebackup; * exclusive backup; * non-exclusive backup; * restore.

PostgreSQL 12 brought a significant change in this area with the removal of the recovery
configuration file. We’ll see more precisely the impact of this change.

We’ll then mention some interesting backup (and restore) tools and give some key
points to compare them (documentation, parallel execution, compression, incremental
backups,…).

www.dalibo.com
7

Point-in-time Recovery, target 2020

WHAT ISWAL?
• write-ahead log

– transaction log (aka xlog)
• usually 16 MB (default)

– --wal-segsize initdb parameter to change it
• pg_xlog (<= v9.6) -> pg_wal (v10+)
• designed to prevent data loss in most situations

https://fr.slideshare.net/PGDayAmsterdam/pgdayamsterdam-2018-devrim-gunduz-wal-
everything-you-want-to-know

WRITE-AHEAD LOG (WAL)
• transactions written sequentially

– COMMIT when data are flushed to disk
• WAL replay after a crash

– make the database consistent

WAL is the mechanism that PostgreSQL uses to ensure that no committed changes are
lost. Transactions are written sequentially to the WAL and a transaction is considered
to be committed when those writes are flushed to disk. Afterwards, a background
process writes the changes into the main database cluster files (also known as the
heap). In the event of a crash, the WAL is replayed to make the database consistent.
https://www.postgresql.org/docs/current/wal-intro.html

DATAMODIFICATIONS
• transactions modify data in shared_buffers
• checkpoints and background writer…

– … push all dirty buffers to the storage

Remark: back-ends may also write data to the storage

8

Data modifications (2)

DATAMODIFICATIONS (2)

www.dalibo.com
9

Point-in-time Recovery, target 2020

POINT-IN-TIME RECOVERY (PITR)
• combine

– file-system-level backup
– continuous archiving of WAL files

• restore the file-system-level backup and replay archived WAL files

https://www.postgresql.org/docs/current/continuous-archiving.html

BENEFITS
• live backup
• less data-losses
• not mandatory to replay WAL entries all the way to the end

DRAWBACKS
• complete cluster backup…

– … and restore
• big storage space (data + WAL archives)
• WAL clean-up blocked if archiving fails
• not as simple as pg_dump

10

WAL ARCHIVES
• 2 possibilities

– archiver process
– pg_receivewal (via Streaming Replication)

ARCHIVER PROCESS

• configuration (postgresql.conf)
– wal_level = replica
– archive_mode = on or always
– archive_command = '... some command ...'
– archive_timeout = 0

• don’t forget to flush the file on disk!

PG_RECEIVEWAL

• archiving via Streaming Replication
• writes locally WAL files
• supposed to get data faster than the archiver process
• replication slot advised!

$ pg_receivewal --help
pg_receivewal receives PostgreSQL streaming write-ahead logs.

Usage:
pg_receivewal [OPTION]...

Options:
-D, --directory=DIR receive write-ahead log files into this directory
-E, --endpos=LSN exit after receiving the specified LSN

--if-not-exists do not error if slot already exists when creating a slot
-n, --no-loop do not loop on connection lost

--no-sync do not wait for changes to be written safely to disk
-s, --status-interval=SECS

time between status packets sent to server (default: 10)
-S, --slot=SLOTNAME replication slot to use

--synchronous flush write-ahead log immediately after writing

www.dalibo.com
11

Point-in-time Recovery, target 2020

-v, --verbose output verbose messages
-V, --version output version information, then exit
-Z, --compress=0-9 compress logs with given compression level
-?, --help show this help, then exit

Connection options:
-d, --dbname=CONNSTR connection string
-h, --host=HOSTNAME database server host or socket directory
-p, --port=PORT database server port number
-U, --username=NAME connect as specified database user
-w, --no-password never prompt for password
-W, --password force password prompt (should happen automatically)

Optional actions:
--create-slot create a new replication slot (for the slot's name see --slot)
--drop-slot drop the replication slot (for the slot's name see --slot)

Report bugs to <pgsql-bugs@lists.postgresql.org>.

BENEFITS AND DRAWBACKS
• archiver process

– easy to setup
– maximum 1 WAL possible to lose

• pg_receivewal
– more complex implementation
– only the last transactions are lost

12

FILE-SYSTEM-LEVEL BACKUP
• pg_basebackup
• manual steps

PG_BASEBACKUP

• takes a file-system-level copy
– using Streaming Replication connection(s)

• collects WAL archives during (or after) the copy
• no incremental backup

$ pg_basebackup --format=tar --wal-method=stream \
--checkpoint=fast --progress -h HOSTNAME -U NAME \
-D DIRECTORY

$ pg_basebackup --help
pg_basebackup takes a base backup of a running PostgreSQL server.

Usage:
pg_basebackup [OPTION]...

Options controlling the output:
-D, --pgdata=DIRECTORY receive base backup into directory
-F, --format=p|t output format (plain (default), tar)
-r, --max-rate=RATE maximum transfer rate to transfer data directory

(in kB/s, or use suffix "k" or "M")
-R, --write-recovery-conf

write configuration for replication
-T, --tablespace-mapping=OLDDIR=NEWDIR

relocate tablespace in OLDDIR to NEWDIR
--waldir=WALDIR location for the write-ahead log directory

-X, --wal-method=none|fetch|stream
include required WAL files with specified method

-z, --gzip compress tar output
-Z, --compress=0-9 compress tar output with given compression level

General options:
-c, --checkpoint=fast|spread

set fast or spread checkpointing

www.dalibo.com
13

Point-in-time Recovery, target 2020

-C, --create-slot create replication slot
-l, --label=LABEL set backup label
-n, --no-clean do not clean up after errors
-N, --no-sync do not wait for changes to be written safely to disk
-P, --progress show progress information
-S, --slot=SLOTNAME replication slot to use
-v, --verbose output verbose messages
-V, --version output version information, then exit

--no-slot prevent creation of temporary replication slot
--no-verify-checksums

do not verify checksums
-?, --help show this help, then exit

Connection options:
-d, --dbname=CONNSTR connection string
-h, --host=HOSTNAME database server host or socket directory
-p, --port=PORT database server port number
-s, --status-interval=INTERVAL

time between status packets sent to server (in seconds)
-U, --username=NAME connect as specified database user
-w, --no-password never prompt for password
-W, --password force password prompt (should happen automatically)

Report bugs to <pgsql-bugs@lists.postgresql.org>.

MANUAL STEPS
• pg_start_backup()
• manual file-system-level copy
• pg_stop_backup()

14

Manual steps

PG_START_BACKUP()

SELECT pg_start_backup (

• label : arbitrary user-defined text
• fast : immediate checkpoint?
• exclusive : exclusive mode?

)

EXCLUSIVEMODE

• easy to use but deprecated since 9.6
• pg_start_backup()

– writes backup_label, tablespace_map
• works only on primary servers

NON-EXCLUSIVEMODE

• pg_stop_backup()
– executed in the same connection as pg_start_backup()!
– returns backup_label and tablespace_map content

When used in exclusive mode, pg_start_backup() writes a backup label file
(backup_label) and, if there are any links in the pg_tblspc/ directory, a tablespace map
file (tablespace_map) into the data directory.

When used in non-exclusive mode, the contents of these files are instead returned by the
pg_stop_backup function, and should be written to the backup by the caller.

If the server crashes during a backup, the exclusive mode may lead to some confusion by
getting a message like:

HINT: If you are not restoring from a backup, try removing the file
"<path to $PGDATA goes here>/backup_label"

See this mail for more information about that.

www.dalibo.com
15

https://www.postgresql.org/message-id/CA+TgmoaGvpybE=xvJeg9Jc92c-9ikeVz3k-_Hg9=mdG05u=e=g@mail.gmail.com

Point-in-time Recovery, target 2020

DATA COPY

• copy data files while PostgreSQL is running
– PGDATA directory
– tablespaces

• inconsistency protection with WAL archives
• ignore

– postmaster.pid, postmaster.opts, pg_internal.init
– log, pg_wal, pg_replslot,…

• don’t forget configuration files!

https://www.postgresql.org/docs/current/continuous-archiving.html#BACKUP-LOWLEVEL-
BASE-BACKUP-DATA

PG_STOP_BACKUP()

SELECT * FROM pg_stop_backup (

• exclusive
• wait_for_archive

)

• on primary server
– automatic switch to the next WAL segment

• on standby server
– consider using pg_switch_wal() on the primary…

SUMMARY

16

RESTORE
• recovery procedure is simple but…

– must be followed carefully!

https://www.postgresql.org/docs/current/continuous-archiving.html#BACKUP-PITR-
RECOVERY

RECOVERY STEPS (1/5)
• stop the server if it’s running
• keep a temporary copy of your PGDATA / tablespaces

– or at least the pg_wal directory
• remove the content of PGDATA / tablespaces directories

RECOVERY STEPS (2/5)
• restore database files from your file system backup

– pay attention to ownership and permissions
– verify tablespaces symbolic links

• remove content of pg_wal (if not already the case)
• copy unarchived WAL segment files

RECOVERY STEPS (3/5)
• configure the recovery…

– before v12: recovery.conf
– after: postgresql.conf + recovery.signal

• restore_command = '... some command ...'
• prevent ordinary connections in pg_hba.conf if needed

www.dalibo.com
17

Point-in-time Recovery, target 2020

POSTGRESQL 12
Integrate recovery.conf into postgresql.conf

recovery.conf settings are now set in postgresql.conf (or other GUC
sources). Currently, all the affected settings are PGC_POSTMASTER;
this could be refined in the future case by case.

Recovery is now initiated by a file recovery.signal. Standby mode is
initiated by a file standby.signal. The standby_mode setting is
gone. If a recovery.conf file is found, an error is issued.

...

pg_basebackup -R now appends settings to postgresql.auto.conf and
creates a standby.signal file.

2dedf4d9a899b36d1a8ed29be5efbd1b31a8fe85

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=2dedf4d9a899b36d1a8ed29be5efbd1b31a8fe85

RECOVERY STEPS (4/5)
• recovery target:

– recovery_target_name, recovery_target_time
– recovery_target_xid, recovery_target_lsn
– recovery_target_inclusive

• timeline to follow:
– recovery_target_timeline

• action once recovery target is reached?
– recovery_target_action
– pg_wal_replay_resume

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-
WAL-ARCHIVE-RECOVERY

18

Recovery steps (5/5)

RECOVERY STEPS (5/5)
• start the server
• watch the restore process

– until consistent recovery state reached
• inspect your data

LSN
• log sequence number

– position of the record in WAL file
– provides uniqueness for each WAL record

=# SELECT pg_current_wal_lsn();
pg_current_wal_lsn

2/3002020
(1 row)

=# SELECT pg_walfile_name(pg_current_wal_lsn());
pg_walfile_name

000000010000000200000003
(1 row)

TIMELINES
• archive recovery complete -> new timeline

– part of WAL segment file names
– to identify the series of WAL records generated after that recover
– .history files

• recovery_target_timeline
– default: latest (v12+) or current (< v12)

www.dalibo.com
19

Point-in-time Recovery, target 2020

TIMELINES (2)

WAL FILENAME
• 000000010000000200000003

– 00000001 : timeline
– 00000002 : wal
– 00000003 : segment

• hexadecimal
– 000000010000000000000001
– 0000000100000000000000FF
– 000000010000000100000000
– …

Since version 9.3, segment names are from 00000000 to 000000FF. Previously, to
000000FE.

20

PITR TOOLS
• tools make life easier

– pgBackRest
– pitrery
– Barman
– WAL-G

• providing
– backup, restore, purge methods
– archiving commands

PGBACKREST
• written in C (since version 2.21)
• custom protocol

– local or remote operation (via SSH)
• full/differential/incremental backup
• parallel, asynchronous WAL push and get
• Amazon S3 support

https://pgbackrest.org

PITRERY
• set of Bash scripts

– archive_wal
– pitrery
– restore_wal

• push mode (SSH)
• mono-server
• tar or rsync backup method

https://dalibo.github.io/pitrery

www.dalibo.com
21

Point-in-time Recovery, target 2020

BARMAN
• written in Python
• remote backups (pull mode)

– via SSH
– or Streaming Replication

• handles multiple servers
• pg_receivewal & pg_basebackup support

https://www.pgbarman.org

Because Barman transparently makes use of pg_basebackup, features such as incremen-
tal backup, parallel backup, deduplication, and network compression are currently not
available.

WAL-G
• written in Go
• based on WAL-E
• storage

– Amazon S3
– Google Cloud
– Azure
– local

https://github.com/wal-g/wal-g

22

Encryption

WHAT IS A GOOD DATABASE BACKUP TOOL?
• usable

– documentation & support
– out-of-box automatization of various routines

• scalable
– parallel execution
– compression
– incremental & differential backups

• reliable
– Schrödinger’s backup law

* The condition of any backup is unknown until a restore is attempted

https://www.postgresql.eu/events/pgconfeu2018/sessions/session/2098/slides/123/Advanced%20backup%20methods.pdf

WAL ARCHIVES

archive_command restore_command pg_receivewal

pgBackRest YES(+ archive-async) YES(+ archive-async) NO

pitrery YES YES NO

Barman YES YES YES

WAL-G YES YES(+ wal prefetch) NO

ENCRYPTION

method

pgBackRest YES aes-256-cbc

pitrery NO

Barman NO

WAL-G YES S3 server-side / libsodium

www.dalibo.com
23

Point-in-time Recovery, target 2020

PARALLEL EXECUTION

backup, restore archiving parameters

pgBackRest YES YES process-max

pitrery NO NO

Barman YES rsync NO parallel_jobs

WAL-G YES YES WALG_*_CONCURRENCY

COMPRESSION

backups archives how?

pgBackRest YES YES gzip

pitrery YES tar YES gzip, pigz, bzip2,…

Barman NO YES gzip, pigz, bzip2,…

WAL-G YES YES lz4, lzma, brotli

NETWORK

network compression bandwidth limit

pgBackRest YES NO

pitrery NO YES rsync

Barman YES rsync YES rsync

WAL-G NO YES

24

Incremental backups

INCREMENTAL BACKUPS

how?

pgBackRest YES --type=incr--type=diff

pitrery YES rsync hardlinks

Barman YES rsync hardlinks

WAL-G YES WALG_DELTA_MAX_STEPSWALG_DELTA_ORIGIN

www.dalibo.com
25

Point-in-time Recovery, target 2020

USEFUL RESOURCES
• Devrim Gündüz - WAL: Everything You Want to Know
• PostgreSQL docs - WAL introduction
• PostgreSQL docs - Continuous Archiving and PITR
• Anastasia Lubennikova - Advanced backup methods

26

https://fr.slideshare.net/PGDayAmsterdam/pgdayamsterdam-2018-devrim-gunduz-wal-everything-you-want-to-know
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/continuous-archiving.html
https://www.postgresql.eu/events/pgconfeu2018/sessions/session/2098/slides/123/Advanced%20backup%20methods.pdf

CONCLUSION
• PITR is

– reliable
– fast[er than pg_dump]
– continuous

• tools make life easier
– choose wisely…
– validate your backups!

www.dalibo.com
27

Point-in-time Recovery, target 2020

QUESTIONS?

28

	Who Am I?
	Dalibo
	Introduction
	What is WAL?
	Write-Ahead Log (WAL)
	Data modifications
	Data modifications (2)

	Point-In-Time Recovery (PITR)
	Benefits
	Drawbacks

	WAL archives
	Archiver process
	pg_receivewal
	Benefits and drawbacks

	File-system-level backup
	pg_basebackup
	Manual steps
	pg_start_backup()
	Exclusive mode
	Non-exclusive mode
	Data copy
	pg_stop_backup()
	Summary

	Restore
	Recovery steps (1/5)
	Recovery steps (2/5)
	Recovery steps (3/5)
	PostgreSQL 12
	Recovery steps (4/5)
	Recovery steps (5/5)
	LSN
	Timelines
	Timelines (2)

	WAL filename

	PITR Tools
	pgBackRest
	pitrery
	Barman
	WAL-G

	What is a good database backup tool?
	WAL archives
	Encryption
	Parallel execution
	Compression
	Network
	Incremental backups

	Useful resources
	Conclusion
	Questions?

