

 Data Masking and Anonymization for PostgreSQL

Data Masking and Anonymization for PostgreSQL

	The Anonymization Challenge

	8 Strategies

	PostgreSQL Anonymizer

	The Future

My Story

Let’s do this !

	jailer

	pgantomizer

	ARX

	pgsync

	anomyze-it

	anonymizer

	mat2

	Talend

	open anonymizer

Meh.

	Do I really need Java or Ruby for this ?

	Describe data manipulations in a YAML file ?

	Extract data from Postgres and load them back ?

So I started building my own SQL script…

What is anonymization ?

Modify a dataset to avoid any identification while remaining suitable for testing, data analysis and data processing.

Why ?

	Open Data

	Continuous Integration

	Functional Testing

	Analytics

	Audit

	Development

Static vs Dynamic Anonymization

	Dynamic Masking offers an altered view of the real data without modifying it. Some users may only read the masked data, others may access the authentic version.

	Permanent Alteration is the definitive action of substituting the sensitive information with uncorrelated data. Once processed, the authentic data cannot be retrieved.

Why it’s hard

	Singling out

	Linkability

	Indirect Identifiers

Singling Out

The possibility to isolate a record and identify a subject in the dataset.

SELECT * FROM employees;

 id | name | job | salary
------+----------------+------+--------
 1578 | xkjefus3sfzd | NULL | 1498
 2552 | cksnd2se5dfa | NULL | 2257
 5301 | fnefckndc2xn | NULL | 45489
 7114 | npodn5ltyp3d | NULL | 1821

Linkability

Identify a subject in the dataset using other datasets

	Netflix Ratings + IMDB Ratings 1

	Hospital visits + State voting records 2

Indirect Identifiers

87% of the U.S. Population are uniquely identified by date of birth, gender and zip code 3

	https://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf↩︎

	https://techscience.org/a/2015092903/↩︎

	http://latanyasweeney.org/work/identifiability.html↩︎

This is a losing game !

You can’t measure the usefulness of the anonymized dataset

You can’t prove that re-identification is impossible 1

What does the GDPR say ?

	« Anonymization is hard » (WP29 Opinion 05/2014)

	« Pseudonymization is enough » (Recital 83)

	« Data Protection By Design » (Article 25)

	http://randomwalker.info/publications/no-silver-bullet-de-identification.pdf↩︎

8 strategies to anonymize data

Example

CREATE TABLE marriott_client (
 id SERIAL,
 name TEXT NOT NULL,
 passwd TEXT NOT NULL,
 address TEXT,
 age INTEGER,
 points INTEGER,
 phone TEXT
);

0. Sampling

0. Sampling

-- Work only on 20% of a table

SELECT * FROM marriott_client
TABLESAMPLE BERNOULLI(20);

0. Sampling

Sampling is not Anonymization but….

	Direct implementation of the “Data Minimisation” principle of GPDR

	Reducing dataset will reduce the risk of re-identification

	The anonymization process will be faster

	Use pg_sample to keep referential integrity among several tables

1. Suppression

1. Suppression

-- Just remove the data

UPDATE marriott_client
SET name = NULL;

UPDATE marriott_client
SET points= 0;

UPDATE marriott_client
SET passwd = "CONFIDENTIAL";

1. Suppression

	Simple and Efficient

	Direct implementation of the “Data Minimisation” principle of GPDR

	Breaks integrity constraints (CHECK / NOT NULL)

	Useless for functional testing

2. Random Substitution

2. Random Substitution

-- Replace the data with a purely random value

UPDATE marriott_client
SET name = md5(random()::text);

UPDATE marriott_client
SET points= 100*random();

2. Random Substitution

	Simple and Fast

	Avoid breaking NOT NULL constraints

	Still useless for functional testing

3. Adding Noise

3. Adding Noise

-- Randomly "shifting" the value of +/- 25%
UPDATE marriott_client
SET points = points * (1+(2*random()-1) * 0.25) ;

3. Adding Noise

	The dataset remains meaningful

	AVG() and SUM() are similar to the original

	works only for dates and numeric values

	“extreme values” may cause re-identification (“singling out”)

4. Encryption

4. Encryption

-- uses an encryption algorithm
CREATE EXTENSION pgcrypto;

-- generate a random salt and throw it away
UPDATE marriott_client
SET name = crypt('name', gen_salt('md5'));

4. Encryption

	Respect the UNIQUE constraint

	Possible implementation of “Pseudonymization”

	The transformation can be IMMUTABLE

	Functional testing is weird

	If the key is stolen, authentic data can be revealed.

5. Shuffling

5. Shuffling

-- Mixing values within the same column
WITH p1 AS (
 SELECT row_number() over (order by random()) n,
 points AS points1
 FROM marriott_client),
p2 AS (
 SELECT row_number() over (order by random()) n,
 id AS id2
 FROM marriott_client)
UPDATE marriott_client
SET points = p1.points1
FROM p1 join p2 on p1.n = p2.n
WHERE id = p2.id2;

5. Shuffling

	The dataset remains meaningful

	Perfect for Foreign Keys

	Works bad with low distribution (ex: boolean)

6. Faking / Mocking

6. Faking / Mocking

-- replace data with **random-but-plausible** values.

UPDATE marriott_client
SET address = fake_address();

6. Faking / Mocking

	The faking function is hard to write (see faker)

	For complex data types, it’s hard produce relevant synthetic data

	Not appropriate for analytics because the values are not “real”

7. Partial Suppression

7. Partial Suppression

-- "01 42 92 81 00" becomes "XX XX XX 81 00"

UPDATE marriott_client
SET phone = 'XX XX XX ' || substring(phone FROM 9 FOR 5);

7. Partial Suppression

	The user can still recognize his/her own data

	Transformation is IMMUTABLE

	Works only for TEXT / VARCHAR types

8. Generalization

8. Generalization

-- Instead of "Client X is 28 years old",
-- Let's say "Client X is between 20 and 30 years old."

CREATE TABLE anonymous_client
AS SELECT
 id,
 '*' AS name,
 int4range(age/10*10, (age/10+1)*10) AS age
 FROM marriott_client
;

8. Generalization

	The data type has changed

	Breaks CI, functional tests and any use related to the application.

	Fine for data analytics and aggregation.

	Risk of singling-out.

Recap

	Suppression : Useless attributes

	Random : Useless attributes with constraints

	Noise (Numeric and Dates) : Dev / CI / Functional Testing

	Encryption (Text) : UNIQUE attributes

	Shuffle : Foreign keys / Analytics

	Faking : Dev / CI / Functional Testing

	Partial (Text) : Direct Identifiers

	Generalization (Numeric and Dates) : Analytics

https://gitlab.com/dalibo/postgresql_anonymizer/

What is this ?

	Started as a personal project last year

	Now part of the “Dalibo Labs” initiative

	This is a prototype !

Goals

	Transform data inside PostgreSQL

	Implement useful features (noise, shuffling, faking, etc.)

	Define anonymization policy with SQL statements

	PoC for Dynamic Masking

Install

$ sudo pgxn install postgresql_anonymizer

Load

CREATE EXTENSION anon CASCADE;
SELECT anon.load();

Random

UPDATE marriott_client
SET birth=anon.random_date_between('01/01/1920',now());

Noise

-- shift date d1 on table t1 by +/- 2 years
SELECT anon.add_noise_on_datetime_column(t1,d1,'2 years');

Shuffle

SELECT anon.shuffle_column(marriott_client,points);

Faking

UPDATE marriott_client
SET company = anon.fake_company();

Partial

-- replace 01 42 92 81 00 by XX XX XX 81 00
UPDATE marriott_client
SET phone = anon.partial(phone,0, 'XX XX XX ', 5);

Declarative Dynamic Masking !

	Regular user can see the real data

	Others can only view anonymized data

Create a masked user

CREATE ROLE skynet;
COMMENT ON ROLE skynet IS 'MASKED';

Put masks on columns

-- Random Mask
COMMENT ON COLUMN marriott_client.surname
IS
'MASKED WITH FUNCTION anon.random_last_name()';

-- Partial Mask
COMMENT ON COLUMN marriott_client.phone
IS
'MASKED WITH FUNCTION anon.partial(phone,2,$$*-***-**$$,2)';

Normal user will see :

SELECT * FROM marriott_client WHERE id = '800';
 id | firstname | surname | phone
------+-----------+--------------+------------
 800 | Sarah | Connor | 408-555-1439
(1 row)

Masked user will see :

SET ROLE skynet;
SELECT * FROM marriott_client WHERE id = '800';
 id | firstname | surname | phone
------+-----------+--------------+------------
 800 | Sarah | Nunziata | 40*-***-*19
(1 row)

Masked users can’t read/write masked columns

SET ROLE skynet;
SELECT * FROM marriott_client
WHERE surname ILIKE 'CONNOR';
(0 rows)

SET ROLE skynet;
DELETE FROM marriott_client
WHERE surname ILIKE 'CONNOR';
ERROR: permission denied for view marriott_client

How it Works

Just 1 big fat hack

Basically :

	500 lines of pl/pgsql

	A misappropriation of the COMMENT syntax

	An event trigger on DDL commands

	Silently creates a “masking view” upon the real table

	Tricks masked users with search_path

	use of TABLESAMPLE with tms_system_rows for random functions

Limits

	PostgreSQL 9.6 and later

	Only one schema

	What if the columns COMMENTs are really used ?

	Masked users can’t use pg_dump

	Performances ?

	SELECT * from pg_stats

Toward «Anonymity by Design»

Any anonymization policy should be defined as close as possible to the data. Just like integrity constraints, security rules and triggers. PostgreSQL should allow developers to declare how a column will be masked.

Extend Postgres DDL dialect

ALTER TABLE marriott_client
ALTER COLUMN email
ADD MASK WITH FUNCTION foo(email);

GRANT UNMASK TO admin;

(MS SQL Server already has it)

The plan

	Step 1 : build a PoC in pl/pgsql

	Step 2 : implement C functions

	Step 3 : build a patch for Postgres ?

How to HELP us

	Feedback and bugs !

	images and geodata

	Ideas on how to implement this as an extension

	Advice about extending the SQL syntax

	Research on K-Anonymity and Differential_Privacy

Contact me !

Not Just about GDPR….

Free software communities must lead the way to build a future where privacy and anonymity are available to everyone. And of course PostgreSQL has an important role to in this domain because it’s by far the wolrd’s most dynamic and innovative database engine.

Links

	No silver bullet: De-identification still doesn’t work

	Dynamic Data Masking With MS SQL Server

	Ultimate Guide to Data Anonymization

	UK ICO Anonymisation Code of Practice

More Links

	L. Sweeney, Simple Demographics Often Identify People Uniquely, 2000

	How Google anonymizes data

	IAPP’s Guide To Anonymisation

	A Face Is Exposed for AOL Searcher No. 4417749

Photo Credits

qiagen, arvin_benitez, tonynewell, gorbould, vshioshvili, w4nd3rl0st, ysn, 125222692@N04, thecostumeguild

EPUB/nav.xhtml

Data Masking and Anonymization for PostgreSQL

		Data Masking and Anonymization for PostgreSQL

		My Story		Let’s do this !

		Meh.

		

		

		What is anonymization ?		Why ?

		Static vs Dynamic Anonymization

		Why it’s hard

		Singling Out

		Linkability

		Indirect Identifiers

				This is a losing game !

		What does the GDPR say ?

		8 strategies to anonymize data		Example

				0. Sampling

		0. Sampling

		0. Sampling

				1. Suppression

		1. Suppression

		1. Suppression

				2. Random Substitution

		2. Random Substitution

		2. Random Substitution

				3. Adding Noise

		3. Adding Noise

		3. Adding Noise

				4. Encryption

		4. Encryption

		4. Encryption

				5. Shuffling

		5. Shuffling

		5. Shuffling

				6. Faking / Mocking

		6. Faking / Mocking

		6. Faking / Mocking

				7. Partial Suppression

		7. Partial Suppression

		7. Partial Suppression

				8. Generalization

		8. Generalization

		8. Generalization

		Recap

				What is this ?

		Goals

		Install

		Load

		Random

		Noise

		Shuffle

		Faking

		Partial

		Declarative Dynamic Masking !

		Create a masked user

		Put masks on columns

		Normal user will see :

		Masked user will see :

		Masked users can’t read/write masked columns

		How it Works

		Just 1 big fat hack

		Limits

		Toward «Anonymity by Design»

		Extend Postgres DDL dialect

		The plan

		How to HELP us

		Contact me !

		Not Just about GDPR….

		Links

		More Links

		Photo Credits

EPUB/media/file1.gif

EPUB/media/file2.png
Masked User

SELECT * FROM customer

VIEW mask.customer A SELECT * FROM stock

SELECT * FROM customer SELECT * FROM stock

“a
TABLE public.customer TABLE public.stock

EPUB/media/file3.jpg
Damien Clochard

EMAIL : daamien@gmail.com
COMPANY: dalibo

PROJECTS:
https://github.com/daamien/
https://gitlab.com/daamien/

EPUB/media/file0.jpg
John Doe

EMWAIL : d********@g*******.com
COMPANY : ab436232efab1dc5

PROJECTS:
[CONFIDENTIAL]

